Moving to Java

	These notes are to assist you in moving to Java from another language - it is assumed that you have done a first course in some other language (e.g Visual Basic, Pascal, C, C++, Cobol...) You will have covered loops, selection, procedures/functions, variables, I/O, passing parameters.

Unusually, we will not look at the main features of Java, but instead look at the trivia (well, you will look back on it as trivia when you have passed through it !) - such things as how we code a loop, an 'if', where the semicolons and commas go etc. It is assumed that the 'big ideas' in Java will be part of your following course. It depends on what course you are doing, but the big ideas might include: object-orientation, networking, applets, database access, data structures etc.

It is important , of course, that you can move between programming languages, and appreciate the significant features, without getting bogged down in the trivia of semicolons, etc.

Website, for a copy of this doc, and other stuff:

http://www.shu.ac.uk/schools/cms/teaching/mp/msc2003.htm
Mike Parr Oct 2003
Java Overview

Java is a programming language invented around 1994, by James Gosling, who works for Sun Microsystems in the USA. It is similar to C and C++ - popular industrial languages. Java code is not compiled into a machine-code .exe file - instead, it is compiled to an intermediate code, which is then executed by an interpreter program. Because of the non -exe nature, it runs slower than C++. Any machine that has such an interpreter can run Java, and it is available on PC, Mac, Sun, etc, and under Linux as well. A java program can run on ANY machine without re-compiling. Java is particularly useful for internet programming.

Applets and Applications

Java can be used to write conventional applications, but it can also be used to write 'applets' - programs which run within an internet browser window. These programs are downloaded from a server, along with html code. Note that applets are pre-compiled, and are interpreted by software inside your browser (which must be 'Java-enabled' - most recent browsers are). The mechanism is that you create an HTML file (often the programming environment will create this for you.) The HTML will include a special <APPLET> tag, which initiates a download of the compiled code.

In the following, we shall look mostly at applets - but coding an applet is very similar to coding an application.

A First Applet

The following code draws a line on the screen:

import java.awt.*;

import java.applet.Applet;

public class FirstLine extends Applet {

public void paint(Graphics g) {

g.drawLine(0,0,100,100); // diagonal line

}

}

Here we look at the main points:

· The above code is stored in a file named FirstLine.java - it MUST be stored in a file named after the class contained in the program.

· import - facilities for graphics, GUI, networking are not built-in to the language - we must explicitly import libraries.

· Class - every Java program is a class - the details of classes are ignored here - they are one of the 'big ideas'.

· { curly brackets } - braces. In Java. C, C++ there is no endif, wend, endwhile, endsub. Instead, {... } are used to start and end sections of code - so, a } can mean end, end sub, end while, endif.... When reading code, you match up the { and } to find out which - hopefully the writer will have used indentation to make this clear - it is especially important to use indentation in code layout with Java.

· Semicolons - ; - they end a statement. Use of them is just as in C, C++, Perl, and Pascal(almost). They do NOT go after the end of EVERY line - that would be too easy for you to learn. In your early days, look at example code to see where they go.

· Note that Java can be laid out in free format. We could put

x=3;

y=4;

or

x=3; y=4;

The first style is recommended

You could even put:

x=3

;y=4;

In fact, java compilers often report a 'missing semicolon' error on the line following the omission - watch out for this - always look at the line above the indicated line.

· // shows a comment

Here is another applet program, which draws a variety of shapes

import java.awt.*;

import java.applet.Applet;

public class FirstShapes extends Applet {

public void paint(Graphics g) {

g.drawRect(30,30,80,40);

g.drawOval(120,30,50,50);

g.setColor(Color.black);

g.fillRect(30,100,80,40);

g.fillOval(120,100,50,50);

g.drawLine(30,160,130,170);

g.drawArc(30,180,50,50,60,40);

g.fillArc(120,180,50,50,60,40);

}

}

· All the statements are contained in a paint() method BUT this is not the case in many programs.

· Method - like a procedure, subroutine, function, paragraph in other languages. Methods are 'invoked' called-up.

· Object. In the above, g is an object (in fact, an instance of the class: Graphics.) DrawLine is a pre-coded method which exists in the class Graphics, which we can make use of. We MUST access the method of a class instance with the DOT notation:

 object.method (possible Parameters)

If there are no parameters, we must supply empty brackets ()

You may Have seen this in VB:

 x = txtBox.text

you could imagine that 'text' is a method which fetches the contents of the textbox - though in VB, we don't need to supply the ()

Variables and Types

In Java, we have primitive built-in types, e.g. integer (int) , float(decimal point) and other long versions. We declare them by e.g.:

int i,j;

float a,b;

we can also initialise them as we declare them:

int c=44;

float p=1.23f;

the f means float.

We have a variety of scopes - areas of the program in which a variable can be used. We have mainly:

local scope - within a method

class scope - can be used by any method within a class (similar to 'general' variables in VB.)

As well as primitive types, we can create objects - instances of classes, e.g.:

String s = "mike";

Button b = new Button("click me");

For most classes, we use the 'new' keyword to create new instances.

Note that we can't use the built-in operators (> +, -, , = etc) to work on objects - we have to use methods:

String s="fred";

if(s.equals("jim"))

...etc

Here is a program with ints.

//calculate area of rectangle -version 1

import java.awt.*;

import java.applet.Applet;

public class Calculation extends Applet {

public void paint(Graphics g) {

//declarations

int length;

int breadth;

int area;

length = 20;

breadth = 10;

area = length * breadth;

g.drawString("Area is " + area, 100, 100);// answer

}

}

Arithmetic operators

* / %

+ -

There are some differences in the way in which Java handles integer remainder and division:

int a , b;

a = 10/5;
// a becomes 2

b = 7/4;
// b becomes 1

The first case is as expected, but in the case where the integers donít divide exactly, Java will do the division and truncate (chop off) any decimal places, forcing the answer to be an integer. Incidentally, you might have thought that a better answer would have been 2, but Java (in common with many languages) does not round to the nearest integer. When dividing float quantities, Java produces a float answer, as you might expect, though with potential inaccuracies in the least-significant decimal places:

float x;

x = 6.5f / 2.0f; // x becomes 3.25

The remainder operator is %, operates slightly differently on integers and floats. It produces the remainder, as in:

int a;

a = 12 % 4; //a becomes 0 (divides exactly)

a = 13 % 4; //a becomes 1(i.e. remainder 1)

a = 15 % 4; //a becomes 3

float x;

x = 7.0f % 2.0f; // x becomes 1.0

x = 8.6f % 2.0f; // x becomes 0.6

Remainder - consider this problem:

Given a whole number of cents, convert it into two quantities ñ the number of dollars and the number of cents remaining.

The solution is:

int cents = 234;

int dollars, centsRemaining;

dollars = cents / 100; // 2

centsRemaining = cents % 100; // 34

We can also use ++ and -- operators:

n++; //add 1 to n

n--; // subtract 1 from n
 Type conversion

Sometimes, we need to convert values from one type to another. The most common cases are converting an int to a float, and a float to an int. Here is how to do it:

int ivalue = 33;

float fvalue = 3.9f;

int i;

float x;

x = ivalue; // x becomes 33.0

i = (int) fvalue; // i becomes 3

x = (float) (10+11) / 2; // x becomes 10.5

The item in (...) is termed a 'cast'. This approach is from C and C++. To convert one object to another, we usually invoked method provided by the class, as opposed to a cast.

The main points are:

· int can be converted to float in an assignment, without any additional programming. This is safe, as no information can be lost.

· float can be converted to int by using a cast, i.e. (int). We have to acknowledge that we require a conversion, because information can be lost or, in the above example, decimal places are truncated.

· We can use casts within expressions. In the last line, we find the average of two integers by adding them, then converting the result (21) to a float (21.0). The divide operation now takes place on a float and int, producing a float answer. This is so because the Java rule is that when an operator manipulates a mixture of int and float values, any integers are temporarily converted to float for the purposes of the calculation.

Methods

Procedures, functions, subs etc are termed methods in Java.

From a high-level viewpoint, there are two kinds of methods:

· those which we write within our class and which we invoke from within our class, to make the class easier to understand, or to avoid duplication of code. This type is covered below.

· those which we write within a class, but invoke from outside the class, after creating an instance of the class - i.e an object. This is one of the 'big things' about java, and it omitted here. Briefly, an example is where we create a text area object with 'new', and use its 'get' method to access its text (A text area is like a text box in VB)

TextArea t;

t = new TextArea(20, 30); // create with size

....

String s;

s = t.get(); // use the get method of a text area

Parameters and return values

Here is an example of a method with parameters: drawTriangle:

import java.awt.*;

import java.applet.Applet;

public class TriangleMethodDemo extends Applet {

public void paint(Graphics g) {

// invoke our method:

drawTriangle(g,80,200,100,110);

drawTriangle(g,125,220,60,70);

}

// the method itself:

private void drawTriangle(Graphics g,int bottomX, int bottomY,

 int base,int height) {

int rightX = bottomX+base;

int topX = bottomX+base/2;

int topY = bottomY-height;

g.drawLine(bottomX,bottomY, rightX,bottomY);

g.drawLine(rightX,bottomY,topX,topY);

g.drawLine(topX,topY, bottomX,bottomY);

}

}

· note the 'private' line - the header for the method.

· private - accessible only from within the class

· void - returns no result.

· (...) - contains formsl parameters, each with their type.

· { ... } enclose the body of the method.

· Formal parameters are treated like local variables.

· Parameters can only be passed by value.

· Pointers - used in C, C++. Do not exist in Java.

Here is a program in which one method calls a lower-level method:

import java.awt.*;

import java.applet.Applet;

public class HouseDemo extends Applet

{

public void paint(Graphics g) {

drawHouse(g,50,50, 70,30);

drawHouse(g,100,50,60,20);

}

private void drawTriangle(Graphics g,int bottomX, int bottomY,

 int base,int height) {

g.drawLine(bottomX,bottomY, bottomX+base,bottomY);

g.drawLine(bottomX+base,bottomY,bottomX+base/2,bottomY-

 height);

g.drawLine(bottomX+base/2,bottomY-height,

 bottomX,bottomY);

}

private void drawHouse(Graphics g,int bottomX,int bottomY,

 int width,int height) {

g.drawRect(bottomX, bottomY-height, width,height);

drawTriangle(g,bottomX, bottomY-height,width, height/2);

}

}

A method with no parameters and no returned result is declared as:

private void aMethod() {

 etc

}

and is invoked by:

aMethod();

Returning Values

Methods can use the 'return' statement to pass back a single value (but arrays etc can be returned if we need more values).

We put e.g.

return x+y;

the calculation (expression) after return is evaluated, and the single answer is passed back. 'return' also causes an instant exit from the method.

The use of return must match the method header - if we put:

private float myMethod(int p1, int p2) {

body....

}

then the compiler will check that we pass in two integers and that somewhere in the body we do actually use return to pass back a float expression.

The invoking of a method which returns a value is much the same as in VB or Pascal - the main difference is in the body, where we use return rather than making use of the function name to hold the return value. Java is based on C here.

Here is a return example:

import java.awt.*;

import java.applet.Applet;

public class ReturnDemo extends Applet {

public void paint(Graphics g) {

int answer = areaRectangle(30,40);

g.drawString("area of rectangle is "+answer,100,100);
}

private int areaRectangle(int side1,int side2) {

int area = side1 * side2;

return area;

}

}

There are a number of new features in this example, which go hand in hand.

Instead of void, we have used a type: in this case int. This specifies that the method will use a return statement to pass back a value of that type. The choice of the type depends on the problem, but it can be int, float, a string or even a class type which you will encounter later: Button, TextArea, Scrollbar etc.

 To return a value, we put:

return some expression;

The expression (as usual) could be a number, a variable or a calculation (or even a method invocation), but it must be of the correct type, as specified in the declaration of the method i.e. its header. Additionally, the return statement causes the current method to exit back to the caller immediately.

Creating A GUI

Some Java IDEs allow you to draw a gui on the screen, as in VB. However, a GUI can also be created by program code alone. One of the class libraries is called the Abstract Window Toolkit - AWT.

We create an instance of a GUI control (e.g. Button, Scrollbar - note the capital letter at the start of the name, indicating a class). We then add it to the screen, and register as a listener for the events.

We also must provide an event-handling method for each type of event. There is a lot of trivia associated with building a screen and setting up event-handling, and you should base your program on examples , rather than guesswork or spending hours reading background material.

Here is a scrollbar example:

import java.awt.*;

import java.applet.Applet;

import java.awt.event.*;

public class FirstEvent extends Applet

 implements AdjustmentListener {

 private Scrollbar slider; //declare a scrollbar named slider

 private int sliderValue = 0;

 public void init() { // init the gui

 slider=new Scrollbar(Scrollbar.HORIZONTAL ,0, 1, 0, 100);

 add(slider); // add to screen

 slider.addAdjustmentListener(this); //register for events

 }

 public void paint(Graphics g){

 g.drawString("Current value is " + sliderValue, 100,100);

 }

 // handle event:

 public void adjustmentValueChanged(AdjustmentEvent e) {

 sliderValue = slider.getValue();

 repaint();

 }

}

Here is another scrollbar example, with labels added to display text:

import java.awt.*;

import java.applet.Applet;

import java.awt.event.*;

public class LabelDemo extends Applet

 implements AdjustmentListener {

 private Scrollbar bar1, bar2;

 private int bar1Value = 0;

 private int bar2Value = 0;

 public void init() {

 Label title1, title2; // local scope is sufficient

 title1 = new Label("up:");

 add(title1);

 bar1 = new Scrollbar(Scrollbar.HORIZONTAL, 0,1,0,100);

 add(bar1);

 bar1.addAdjustmentListener(this);

 title2 = new Label(" down:");

 add(title2);

 bar2 = new Scrollbar(Scrollbar.HORIZONTAL, 0,1,0,100);

 add(bar2);

 bar2.addAdjustmentListener(this);

 }

 public void paint(Graphics g) {

 g.drawString("UP value is " + bar1Value, 100,100);

 g.drawString("DOWN value is " + bar2Value, 100, 150);

 }

 public void adjustmentValueChanged(AdjustmentEvent e) {

 bar1Value = bar1.getValue();

 bar2Value = bar2.getValue();

 repaint();

 }

}

If you want to draw shapes on the screen, you can put code in paint() and make paint() be invoked by calling repaint() - but paint always clears the screen. To build up a drawing and avoid clearing the screen, you can use GetGraphics, as in:

import java.awt.*;

import java.applet.Applet;

import java.awt.event.*;

public class ScrollbarValues extends Applet

 implements AdjustmentListener {

 private Scrollbar slider;

 private int currentX = 1;

 private int currentY = 5;

 public void init() {

 slider = new Scrollbar(Scrollbar.HORIZONTAL ,0, 1, 0, 100);

 add(slider);

 slider.addAdjustmentListener(this);

 }

 public void adjustmentValueChanged(AdjustmentEvent e) {

 Graphics g = getGraphics();

 currentX = slider.getValue();

 g.drawLine(0, currentY, currentX, currentY);

 currentY = currentY+5;

 }

}

There is lots of detail in the AWT, and you need a textbook - the detail is not covered here.

Control Structures

Here is a while loop:

while (n < 5) {

g.drawLine (x, y, x + 100, y);

y = y + 10;

n++;

}

Note the { and } which place the enclosed statements within the loop. There is NO endif, wend , or endwhile - you use {...}.

Also, the condition after the while MUST be enclosed in ()

The conditions:-

>
means greater than

<
means less than

==
means equals

!=
means not equal to

<=
means less than or equal to

>=
means greater than or equal to

We can combine conditions with and, or not, but they are not written is English. We must use:

&&
and

||
or

!
not

e.g.

while ((a>b) && (c>d)) { // shows 'and'

Here is a for-loop - more error-prone than its VB equivalent. It has lots of options, and we only show the most common style:

for(int n=1; n<=10; n++) { //VB: for n=1 to 10

 body of loop

}
// end of loop

Do not put a ; after a loop, as in:

while (n<5) ;

This has the effect of repeating an imaginary 'null' statement - forever in this case.

The 'if' has this form:

if (condition) {

statement1;

statement2;

}

The second type of if statement has the structure:

if (condition)

statementA;

else

statementB;

or

if (condition) {

statement1;

statement2;

} else {

statement3;

statement4;

}

If we only have one statement following if or else (or while, for) we can omit the enclosing { }. But it is a good idea to put them in anyway.

We can nest if, as in:

 if (condition) {

statement1;

statement2;

 }

 else if (condition2) {

statement3;

statement4;

}

else if(condition3) {

 statement 5;

 statement 6;

}

else {

 statement7;

}

This is the end....

We have looked at the nitty-gritty, such as semicolons, braces, parameters. But try to separate the trivia of Java from the big ideas!

12
1

