

OBJECT-ORIENTED

PROGRAMMING

AND C++

Mike Parr 1.7.97

�
� TOC \o "1-3" �

OBJECT-ORIENTED	� GOTOBUTTON _Toc371405349 � PAGEREF _Toc371405349 �1��

PROGRAMMING	� GOTOBUTTON _Toc371405350 � PAGEREF _Toc371405350 �1��

AND C++	� GOTOBUTTON _Toc371405351 � PAGEREF _Toc371405351 �1��

OBJECT-ORIENTED PROGRAMMING - MAIN CONCEPTS	� GOTOBUTTON _Toc371405352 � PAGEREF _Toc371405352 �3��

Intro to Concepts	� GOTOBUTTON _Toc371405353 � PAGEREF _Toc371405353 �3��

Modularity	� GOTOBUTTON _Toc371405354 � PAGEREF _Toc371405354 �3��

Information Hiding	� GOTOBUTTON _Toc371405355 � PAGEREF _Toc371405355 �4��

What is an Object?	� GOTOBUTTON _Toc371405356 � PAGEREF _Toc371405356 �4��

What is a Class?	� GOTOBUTTON _Toc371405357 � PAGEREF _Toc371405357 �4��

Separating the Definition and Implementation	� GOTOBUTTON _Toc371405358 � PAGEREF _Toc371405358 �7��

Problems	� GOTOBUTTON _Toc371405359 � PAGEREF _Toc371405359 �10��

Information Hiding - more	� GOTOBUTTON _Toc371405360 � PAGEREF _Toc371405360 �12��

Jargon	� GOTOBUTTON _Toc371405361 � PAGEREF _Toc371405361 �12��

Language Facilities	� GOTOBUTTON _Toc371405362 � PAGEREF _Toc371405362 �13��

Private Scope	� GOTOBUTTON _Toc371405363 � PAGEREF _Toc371405363 �13��

Class Example	� GOTOBUTTON _Toc371405364 � PAGEREF _Toc371405364 �14��

Templates	� GOTOBUTTON _Toc371405365 � PAGEREF _Toc371405365 �16��

Inheritance	� GOTOBUTTON _Toc371405366 � PAGEREF _Toc371405366 �18��

Polymorphism	� GOTOBUTTON _Toc371405367 � PAGEREF _Toc371405367 �22��

More on inheritance	� GOTOBUTTON _Toc371405368 � PAGEREF _Toc371405368 �22��

�

�

OBJECT-ORIENTED PROGRAMMING - MAIN CONCEPTS

(NOTES TO ACCOMPANY LECTURES

- THESE NOTES ARE NOT COMPLETE IN THEMSELVES)

Jargon:	Object-oriented design (OOD)

		Object-oriented programming languages (OOPLS)

		Object-oriented programming systems (OOPS)

A note on OOD:

(new but thought to be important).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Brings together several important principles.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A simulation or modelling approach. (a real-world item becomes an object ina program.)

�SYMBOL 183 \f "Symbol" \s 10 \h�	A system is regarded as a set of interacting objects.

Intro to Concepts

Reusability

Possibility of 'off the shelf' components ?

Re-use is a matter of degree:

	complete programs (UNIX tools)

	objects/classes

	library routines (square root, I/O)

	adapt source code

	adapt paper designs

OOPLS emphasise re-use.

Modularity

'Good' modularity is vital, both in individual functions and in objects.

An object is a 'sealed up' set of related functions, together with the data they manipulate.

Information Hiding

Objects

 should conceal their method of representing data - 'need to know' approach.

E.g. to use a queue, all you need to know is how to use the set of allowed operations, e.g. initQ, put at rear, take from front. Behind the scenes, the implementation may be by a linked list, an array, or a file.

Thus, the implementation can be separated from the specification (i.e. the set of calls).

The above concepts are covered in more detail later.

What is an Object?

- typically, a collection of related functions together with the data items they manipulate i.e not just program code, not just data items, but a combination.

Example - a stack object: code is the functions (pop, push ...) and data is e.g.:

			data:an array[size 7] of ?;

				top: an integer;

What is a Class?

C++ has these keywords:

class

	create a new class of item. Instances of the class are 'objects'.

public:

	shows items that can be made use of (e.g. called) from outside the class

private:

	shows items whose use is restricted to inside the class - typically variables. There is also a 'protected' keyword that we use with inheritance.

To introduce the concept of a class, we will use a bizarre situation - imagine C++ had no ints or floats, and no + * etc. BUT is has the ability to create these things called classes, and it also has our familiar functions with parameters. We will create a class of things - which we will call (say) integer. The class will allow us to create lots of integers (obviously we need more than one instance of an integer) but it must also allow us to DO things with these integers.

Once we have created our class, we would be able to put, e.g.

#include "intclass.h"

int main()

{

	integer a,b; // create some instances (instantiate)

	multiply (a,78); // perform operations on them

	add(a,b);

etc.

Note the 2 requirements:

�SYMBOL 183 \f "Symbol" \s 10 \h�	to create lots of instances of the class integer. 'instance' is synonymous with 'object'.

�SYMBOL 183 \f "Symbol" \s 10 \h�	to be able to manipulate the instances

Other examples of classes are:

�SYMBOL 183 \f "Symbol" \s 10 \h�	class car - with instances of Ford fiesta, batmobile, Rolls Royce. Operations on these (say in a sales office database) might be: sell, buy, lease...

�SYMBOL 183 \f "Symbol" \s 10 \h�	class ifstream - (input file stream in C++). The programmer can create lots of these, and operations are: open, close, >> (read from,'extract') ...

Note the use of #include "... ". The "" tells C++ to look for a file in YOUR directory, whereas < > indicates a system directory.�

To pursue our crazy example:

The definition - in a mixture of C++ and pseudocode / PDL is along these lines

//file: intclass.h

// definition section(specification, interface, protocol..)----

class integer

{

public: // what can be used from outside

...add(... , ...); // list of prototypes, known as member

 // functions

...multiply(... , ...); // dots = not important here

...

...etc.

private:

 // variables (occasionally functions) that may only be

 // used inside the class

};

// end of definition --

//implementation

// where the work gets done!

... add(... , ...)

{

 actual C++

 code to add 2 integers

 ...

}

... multiply (... , ...)

{

 C++ code

 to multiply ...

}

// end of implementation -------------------------------------

// end of class integer

// --

As you saw above, the user can now include such a file, declare items of the new class, and perform operations on them via function calls.

We will do a real C++ class soon, but , to look even further ahead:

what if we wanted a similar class for float. Would we have to choose new function names (e.g. float_add) or could we use the convenient name 'add'? In fact, in C++ we could define an add which took float parameters, and , when the compiler saw e.g:

	add(x,y);

it would look at the type of the parameters and call the appropriate function. We say that add has been overloaded to work with a different data type.

Overloading enables C++ to distinguish between identically-named functions, by looking at their parameter types. This allows programmers to use convenient, uniform names.

C++ allows use to overload the operators + - * << etc. . If you didn't know, in C, << does a left shift of the bits in an item. Now recall:

#include <iostream.h>

cout << "help!";

the << has been overloaded (in iostream class) to work with screen output. And, yes, + has been overloaded to work with both int and float.

Separating the Definition and Implementation

The implementation can be long - e.g. 1000 lines

The definition can be short - e.g. 10 lines

The user needs to know how to call up the functions, but (normally) doesn't need to know how they work.

The implementation will rarely be altered, so why compile it every time?

Here is a real C++ class (from Friedman & Koffman p538) which a football enthusiast uses to keep track of scores as the match is being listened to. The class is a counter, which allows incrementing, initialising, displaying, etc. There is a lot of C++ mumbo jumbo here - some of it will be explained later!

�

//file: counter.h

#ifndef counter_h

#define counter_h

class counter

{

public:

 //member functions

 void initialise(void);

 void increment(void);

 int current_value(void);

	

	void display(void);

private:

 int value;

};

#endif

And, in another file we have:

//file: counter.cpp

#include <iostream.h>

#include "counter.h"

void counter::initialise(void)

{

 value=0;

}

void counter::increment(void)

{

 value++;

}

int counter::current_value(void)

{

 return value;

}

void counter::display(void)

{

	cout << "[" << value << "]"; // in form [789]

}

//--------------end-----------

�

To use the class, we put:

// file: scorer.cpp

#include <iostream.h>

#include "counter.h"

int main (void)

{

 // 2 instances of class: counter

 counter home_score, away_score;

 home_score.initialise();

 away_score.initialise();

 char goal; // h - home a - away

 cout << "type h or a:";

 cin >> goal;

 if (goal=='h')

 home_score.increment(); // NB dot notation

 else

 away_score.increment();

 home_score.display(); // show current score

 away_score.display();

 cout << endl;

...etc

}

There are many new things here:

There are lots of files. It is good practice to preface each one with its file name, as a comment.

To actually run the whole program, we would compile the file: counter.cpp once to object form, then link it with scorer.cpp . Your C++ system might have a project facility:details on this will be supplied elsewhere.

Note (in the calling program) the dot notation. You could imagine it as 's - as in

	home_score's display

Note that the cpp file can be separately compiled, and could contain member functions for several classes (though it is not a good idea to use this style). These are not bracketed together (as they ARE in the header file), so , if the compiler came across this in the .cpp file:

 display(void)

it would not know which class it was for. (and, typically, many classes have a 'display'). In C++, we resolve this ambiguity by prefixing the implementation member functions with the scope resolution operator ::

 counter::display(void)

We are saying - 'here is the implementation of display for the class: counter'

(other OO languages have a more convenient syntax).

You might find yourself using other classes which themselves have used counter at a lower level. This would result in

 #include "counter.h"

being encountered twice - i.e duplication. To prevent this, is is good practice to use #define, etc in this exact form:

 // file: anyclass.h

 #ifndef anyclass_h

 #define anyclass_h

 ... the class definition

 #endif

These commands will not be explained here - read a book if you need to understand the detail - but the logic is:

'if this file hasn't been included before, include it, and make a note that it has now been included'. Finally, note the use of the underscore_ instead of the dot.

The concept can be illustrated as a sealed box, with 'buttons' visible, and value sealed up:

 counter

� initialise

 increment

 display

� current value

 value

Problems

Now, install your program at the Manchester United ground. The display for each counter is an 80 by 100 array of lights, 5 metres high.

What parts of your program need modifying? Got it?

Why did we invent a display(), rather than putting this in main:

 n = home_score.current_value();

 cout << n;

�

Information Hiding - more

The principle can be used in any language, but is easier in OOPLS.

 - the inner complexities of a module/object should be concealed by its interface to the user.

Analogy:	TV set

			- complicated innards

			- simple controls

In programming, this means choosing (thoughtfully) a set of function calls to access e.g. a data structure - rather than directly accessing it.

Example - queue - what primitive operations?

	- initialise

	- put at rear (item)

	- take from front (item)

	- is_full()

	- is_empty()

	- get_front() // but don't remove

	- how_many()

An operation such as: display_front_item() is not needed at this level, as the user can build it by eg:

		get_front(item)

		cout << item;				(available in programming language)

We are concealing(encapsulating):

	- a complicated algorithm (most procedures, functions do this)

	- the representation of the data

		i.e is it an array, linked list, file

Jargon

Similar concepts occur in other OOPLs:

We might say

�SYMBOL 183 \f "Symbol" \s 10 \h�	send a message to an object, - in Smalltalk. Invoke a method - in Java.

�SYMBOL 183 \f "Symbol" \s 10 \h�	call a member function of an object - in C++

�SYMBOL 183 \f "Symbol" \s 10 \h�	perform an operation on an object - in informal pseudocode

In each case, we are calling up a section of code inside an object.

Language Facilities

It is useful to allow a program to be in several files, maybe with parts compiled already ('separate compilation').

Scope:

 Frequently, variables of a data structure need to be preserved throughout the run of a program, so - in many old languages, they must be global.

(local is no use in this case !)

BUT global is unsafe:

			top = -77; // set top of stack to -77

ANY part of the program can use globals, whereas the principle of IH stresses concealing them - restricting their use , must be accessed via functions.

.

Private Scope

Many modern languages- particularly OOPLS- have an additional 'private'

scope

	private to an object: smalltalk, C++, Eiffel ...

			to a package, module ADT (Ada, Modula ...)

			also in latest versions of Turbo Pascal.

�

Class Example

There are 2 files used - a specification file, and an implementation file:

//file stack.h - specification (interface)

#ifndef stack_h

#define stack_h

class stack

{

public:

 stack(void); //construct new one;

 int push(char x);

 int pop(char& x);

 int is_empty(void);

 int is_full(void);

private:

 int top;

 char data[100];

};

#endif

and in a file called stack.cpp we have:

// file: stack.cpp - implementation

#include "stack.h"

int stack::push(char x)

{

 if(top<100)

 {

 top++;

 data[top]=x;

 return 1; //ok

 }

 else

 {

 return 0; //not ok

	}

} // end push

:

.. and code to actually implement all the other functions..

//---

Here is how we might use the stack class. Someone (you, or a programmer who deals with class libraries...) compiles the .cpp file, once only - to a file called e.g stack.o. You can then write and compile your program, telling the system to link to stack.o. (This is done by setting up a project or 'makefile' on many systems. Your program might look like:

//file: stakdemo.cpp

#include <iostream.h>

#include "stack.h"

int main (void)

{

	stack heap, pile; // create 2 stacks

	char c;

	int result;

	cin >> c;

	result=heap.push(c);

	if (result==0)

		cout >> "error!!";

	// the C++ whiz would put instead:

	if(heap.push(c)==0)

			etc

Points:

Benefits:

�

RE-USE

Templates, Inheritance, Polymorphism

Templates

Recall the stack class, of the form:

//file stack.h - specification (interface)

#ifndef stack_h

#define stack_h

class stack

{

public:

 stack(void); //construct new one;

 int push(char x);

 int pop(char& x);

 int is_empty(void);

 int is_full(void);

private:

 int top;

 char data[100];

};

#endif

and in a file called stack.cpp we have:

// file: stack.cpp - implementation

#include "stack.h"

int stack::push(char x)

{

 if(top<100)

..etc

//---

what if we wanted a stack of floats?

�

We would construct a duplicate version, with every instance of char replaced by float, as in:

//file fstack.h - specification (interface)

#ifndef fstack_h

#define fstack_h

class fstack //float

{

public:

 stack(void); //construct new one;

 int push(float x);

 int pop(float& x);

and similar changes to the .cpp file

note that we are forced to choose a new name for the class, and to duplicate the code - but with minor changes in types. Maybe we could get C++ to do this job?

This is what the template facility (a recent addition to C++, but very important) does for us. Here we only give brief information.

The specification is rewritten:

//file stack.h - template specification (interface)

#ifndef stack_h

#define stack_h

template <class stack_element>

class stack

{

public:

 stack(void); //construct new one;

 int push(stack_element x);

 int pop(stack_element& x);

 int is_empty(void);

 int is_full(void);

private:

 int top;

 stack_element data[100];

};

#endif

and in a file called stack.cpp we have:

// file: stack.cpp - template implementation

#include "stack.h"

<template class stack> // must prefix EVERY func. with this

int stack::push(stack_element x)

{

 if(top<100)

..etc

Now , our user (client programmer) must instantiate the template, with a type, as in:

 #include "stack.h"

 stack <float> pile; // create a stack of floats

 stack <char> holder; // create a stack of chars

 ...

 holder.push('A');

 pile.push(12.34);

REUSE is the point - avoid re-coding!! The template approach has resulted in a C++ 'Standard template Library' - STL - which is widely available. It contains stacks, queues, sets...and algorithms: sort... etc. Check this out before doing any serious class creation.

Inheritance

This feature is thought to be the big difference between OOP and non-OOP languages - but probably the hardest to understand.

Recall the stack - what if we wanted to add an operation to get the top item, without popping it. One approach would be add code to the existing stack, but, in doing so, we might (for example) try to optimise the existing correct code, and screw it up! Another way is to derive a new class, based on an existing character stack class. Recall the stack class, but note the change from 'private' to 'protected':

//file stack.h - specification (interface)

#ifndef stack_h

#define stack_h

class stack

{

public:

 stack(void); //construct new one;

 int push(char x);

 int pop(char& x);

 int is_empty(void);

 int is_full(void);

protected: // *** nb was private ***

 int top; // lets derived classes have access

 char data[100];

};

#endif

The use of 'protected' provides a level of hiding between 'public' and 'private'. Users who simply incorporate a stack in their program will not see the difference, but now we will see a new way of 'using' a stack - to derive a new class from it, adding an additional feature. The derived class - better_stack needs to access the data items, and 'protected' allows this. We put:

 //file: betstack.h - the enhanced one

 class better_stack : public stack; //derived from

 // existing stack

 {

 public:

 // automatic access to member functions

 // of stack: pop, push...

 // no need to re-state them.(i.e inherited)

 char top_item(void); //** our additional operation**

 protected: //automatic access (inheritance)

 // to protected items of stack class(top,data)

 // (and COULD add some extra variables

 // here if needed. We choose not to.)

 };

and our implementation contains only

:

 // file betstack.cpp

 #include "betstack.h"

 better_stack::char top_item(void)

 {

 return data[top];

 }

Note that we have not accessed the code of stack. Software which depends on its correct operation will be unharmed.

Benefits:

BUT this 'patching' benefit of inheritance - sometimes called inheritance for specialisation) is not its main use. Now we will consider its major use - in specification.

Inheritance allows us to express 'is a kind of'. We are likely to plan for inheritance if we know our system will have a significant amount of this 'is a kind of'.

Examples of such systems are:

�SYMBOL 183 \f "Symbol" \s 10 \h�	windows systems (see below)

�SYMBOL 183 \f "Symbol" \s 10 \h�	drawing packages - the classic example

�SYMBOL 183 \f "Symbol" \s 10 \h�	databases

�SYMBOL 183 \f "Symbol" \s 10 \h�	taxonomy of data structures - e.g. sorted/indexed/keyed collections

In such systems, we have a tree of derivations.

Consider a windowing system. We might start with a basic_window class.

We might plan for:

a titled_window class - the same as basic_window, but with the addition of a title bar.

A message_box, with the features of titled_window, and the addition of a message displayed.

We might then have resizable windows, scrollable windows

These new ones are not afterthoughts. At this stage, we know that there will be some operations in common - e.g to be drawn, to be closed, to be moved..

So, we code a specification for a 'base class', which is little more than a list of function names (in extreme cases) these are known as 'virtual' functions. New classes will state that they inherit from this class (or from classes which have inherited from the base (tree!!)) and they will provide implementation code for the operations such as draw, and also for their added operations - such as displaying a title. Incidentally, if basic_window actually had some code in it, the derived class can override it - if the programmer desires - with its own version.

Here is an example:

�

 //base class

 class basic_window

 {

 public:

 virtual void draw(void);

 ...etc.

 };

 // file: titlewin.h

 // derived class

 class titled_window: public basic_window;// 'is a kind

 // of basic window'

 public:

 void draw(); // look in titlewin.cpp

 // for code to actually do it!!

 ...

 };

 //file: titlewin.cpp

 titled_window::draw(void)

 {

 ..code to draw,

 and add title

 }

..etc.

So, what we have:

�SYMBOL 183 \f "Symbol" \s 10 \h�	a top-level (non-specific) class, which, among other things, says that all windows have a draw operation.

�SYMBOL 183 \f "Symbol" \s 10 \h�	derived classes, each of which provide an actual draw (real code!!)

�SYMBOL 183 \f "Symbol" \s 10 \h�	the benefits of a tree structure, to aid understanding, and consistent naming.

If we went for an unplanned approach without inheritance, one window might use draw be displayed, and one might use 'show' - the naming convention is at the whim of the programmer. Which brings us to....

�

Polymorphism

 Polymorphic - applicable to many forms

Consider:

 basic_window bw;

 titled_window tw;

 ...

 bw.draw();

 tw.draw();

In a sense, this is trivial polymorphism - we know which version of draw will be used. But this is not always the case: we might have a function with a window (any type, as long as it is derived from basic_window - passed in:

 void count_and_draw(basic_window& w)

 {

 windows_on_screen++;

 w.draw();

 }

This is true polymorphism. The caller may pass any type derived from basic_window, and, at run-time the correct version of draw (for the type of w) will be used.

More on inheritance

Inheritance for specialisation involves adding extra features to an existing complete class.

However, in inheritance for specification, the base (parent) class provides a specification - i.e. a list of member functions. Some of these may have no code associated with them (virtual) , and classes which inherit will supply an implementation. Where functions are NOT virtual, derived classes might supply their own version (e.g. a more efficient one), or simply use the code of the parent. C++ allows for all of these facilities.

We can thus exploit commonality of code, and a consistent naming/calling pattern.

�PAGE�2�

