MSc FT Programming 1





An Introduction


To


Programming in C++








Contents										Page


1. C and C++										2


2. First C++ program and output						2


3. Input "cin"										3


4. Variable declarations								3


5. Common programming errors						4


6. Comments										6


7. Arithmetic expressions							7


8. Constant identifiers								8


9. Additional I/O operations							8


10. Program design language (PDL)					11


11. Program style & programming  in style				13


12.Functions										15


13.Control structures (if, while, for, do-while, switch)		20


14.Don't use global data	- use parameters!				28


15.How to use graphics in C++						31


16.Programming in the large							34


17.Array types										36


     Top-down design example


      Pseudocode (PDL) to C++ rules























Books - This document may not be detailed enough for you!! Other introductory texts are:


Problem-solving, abstraction and design using C++, by Friedman and Koffman -Addison Wesley


C++ Simply - by Parr, Bell, Scott - Chartwell Bratt


						Mehdi Mir Doug Bell Mike Parr Sept 96


�
1. C and C++





C++ is the successor to the C programming language.


C++ was developed  (early 1980s by Bjarne Stroustrup) from   the C programming language and retains C as a subset.  The C++  programming language is designed to :





be a better C.


support data abstraction


support object-oriented programming








2. First C++ program and output





	        #include <iostream.h>


	        int main(void)


	        {


	              cout<< " Hello programmers \n";


	              cout<< " Welcome to Sheffield Hallam University"<< endl;


		   


		  return (0);


	        }





The program is stored in the file hello.cpp, which is called the   source file.





Line1: C++ preprocessor "#include" instruction, instructs the compiler to include the declarations of the standard stream   input/output facilities as found in the system file "iostream.h".





Line2: every C++ program must have a function named   "int main(void)", and the program starts by executing that function.


	Upon completion, control is return to the program's operating environment through the return ( line 6) statement with the value zero as the value of the program.  Typically, the return value zero denotes program success and a non-zero value indicates some form of program failure.





Line3: curly braces, "{" and "}", indicates the start and the  end of the body of the function main.





 Line4: "cout" refers to the monitor, and is the name of the    "output stream".  The operator "<<" sends its right operand onto the standard output stream "cout".





        "\n" is the newline character.


        "endl" is the name of a special function and the effect of using 


        it is the same as "\n".





The result of the C++ compiler are two files:


�



1  "hello.obj" : machine code version of the C++ program in"hello.cpp".





 2 "hello.exe" : executable version of "hello.obj", but  it has been  "linked" with other programs (stored in   libraries) that are necessary to make the program  executable.





Some more examples illustrating "cout":





          cout<< "the sum of 7 + 3 = ";


          cout<< (7 + 3) ;


          cout<< endl;





                or





          cout<< "the sum of 7 + 3 = " << (7 + 3) << endl;





                or





          cout<< "the sum of 7 + 3 = "


              << (7 + 3)


              << endl;








3. input"cin"





The input operator ">>"  is used to read a value from 


standard input, usually the keyboard. For example the 


following program implements a simple algorithm to read in 


two values, and write out the sum.





	   #include <iostream.h>


	   int main(void)


	   {


	         int val1, val2;


	         cout<< "please enter two numeric values :";


	         cin >> val1 >> val2;


	         cout<< "The sum of " << val1 << "and" << val2<<"is";


	         cout<<(val1 + val2) ;


	          return(0);


	


	   }





4. Variable declarations


Variables are data items whose values vary during execution of a 


program.  C++ provides the programmer with a set of data types:





                character, integer and floating point.








A variable declaration has the form :





                type_specifier               list_of_variables





Types are introduced by the reserved keywords:


                int     		 (integer)


                char   		 (character)


                float   		(single precision floating point)





Here are some examples:


                 int hours, minutes, seconds ;


	      float centigrade, fahrenheit ;


                char ch, first_letter ;





Remember:


          the first character of a variable/identifier must be a letter.


          the underscore character "_" is treated like a letter.


          C++ is case sensitive.  (age and Age are different)


          there is no restriction over the size (length)of  variables/identifiers





 some examples of illegal identifiers:


                1num,       1st_march,          new,         main








5. Common Programming Errors


	


Although a program appears logical and looks correct on paper, it will very rarely compile, link and execute correctly on the first try. Debugging a program is a common activity; however it is sometimes very time consuming. You will learn not to make the same mistakes, but if you do, you will understand the compiler's error messages and  therefore be able to rectify your errors more quickly.





Two basic categories of errors can occur:


	1 Before execution time.  i.e. when the program  fails to successfully compile.


		


	2 After execution time.  i.e. the program  successfully


           compiles but fails to behave as it should!


	


5.1  Errors before execution time


	5.1.1 Syntax errors


	Syntax errors are detected and displayed  by the compiler.


	Here is an example:


	�
	


		#include <iostream.h>


		int main(void) ;


		{


			int num   square;


			


			cout << " Enter a number  :      ;


			cin >> num ;


			num * num = square ;


			cout << " The number squared = " << square 


			


			return ( 0 );


	            } 





Compiler Error Messages :


		declaration terminated incorrectly


		unterminated string or character constant


		unterminated string or character constant


		statement missing


		statement missing


		Lvalue required


		compound statement missing





5.1.2  Link errors


After your program has successfully been compiled, Borland C++  will try to link your source code with any of the C++ libraries that you've included.  For example, if you forget to put 





			#include <iostream.h>


	in your file, you will get a link error message,  because you didn't provide any information for cin and cout.


	


	5.2 Errors after execution time


	5.2.1 Run-time errors


A run-time error can occur as a result of the user directing the computer to perform an illegal operation.  For example :





			num = num / 0 ; 		( divide error )


			


			num = factorial( 999);	( arithmetic overflow)





	5.2.2 Logic errors


	Logic errors are the most difficult to notice because the program appears to run without mishap.  For example :





		size_in_sqmeters = meters_to_yards * size_in_sqyrds;





	is a perfectly logical C++ statement, but it does not perform the 	computation specified by the Metric conversion problem.





Conclusion :


	Trying to debug a program can be very frustrating.  Try to get help from people 	who can assist you.  


LEARN TO ASK 	QUESTIONS!


	





6. Comments


        Comments serve as an aid to the human reader of our programs.


       There are two comment delimiters in C++:





1 the comment pair   "/*      */"


             "/*" specifies the beginning of a comment and


             "*/" specifies the end of a comment.





        This is usually used when the comment extends over several 


        program lines.  For example :


                	/* this comment extends over


                   	several lines. */





2 the double slash comment   "//"


             serves to delimit a single line comment.  Everything on the 


           program line to the right of the delimiter is treated as a 


           comment.


              	  // one line comment





        /* here is a program which reads in two integer values 


        ** and outputs the remainder and the quotient of the first 


        ** number divided by the second number 


        */


        #include <iostream.h>


        int main(void)


        {


                int num1, num2,               // hold values from user


                     remainder, quotient;





                cout <<" Type in two numbers, first one bigger than the 


                                second number" << endl;





                cin >> num1 >> num2 ;   // reading the values





                remainder = num1 % num2 ;


                quotient = num1 / num2 ;


                cout<< " The quotient is  : " << quotient <<endl;


                cout<< " The remainder is : " << remainder <<endl;


	     return(0);


        


        }


        


7.  Arithmetic expressions


The arithmetic operators can be used for any  combination of the 


basic data types:


        


          +     	addition


          -     	subtraction


          *     	multiplication


          /     	divide          ==>     5/2 = 2,       gives the quotient


          %     	remainder       ==>     5%2 = 1,  the remainder





 


        Here are some examples on division:


	


		13.0 / 5		evaluates to 		2.6


		13 / 5.0 		evaluates to		2.6


		13 / 5			evaluates to		2


		13 % 5 		evaluates to		3


		13 % 2		evaluates to		1





7.1 Comparison operators


		


		== 			equals


		!=			not equal


		<			less than


		>			greater than


		<=			lessthan equal


		>=			greater than equal





7.2 The assignment operator 





          	=             becomes 


          	e.g., int x = 20 ;     ==>  x becomes equal to 20.





Remember :


                symbol "=" should be read as 'becomes ' and NOT 'equals'.








7.3 Type conversions in assignment 


        some examples:


		int f, i;


		float s;


		f = 123;           // f has been declared as int. and given an 


                          		   // integer value





         		i = 12.07;     		// evaluates to 12


          	s = 32;        		// evaluates to 32.0


          	i = 'x';       	         // puts ASCII value








8. Constant identifiers


values associated with constant identifiers can not be changed.  


        Here are some examples:





          const int m = 24, n = 36 ;


          const float pi = 3.1416;


          const float a[5] =  {1, 2, 3, 4, 5 };





        // program to illustrate floating-point output





        #include < iostream.h >


        #include < iomanip.h >          // header file for using 


	                                           // setprecision


        int main(void)


        {


                const float pi = 3.14;


                float x = 22.45678;





                cout<< "pi = " << pi << endl;   	// output: pi = ........


                cout<< " x converted = " << (int) x << endl;      // .......


                cout<< setprecision(2) << "x = "<< x <<endl;   // .......


	    return(0);


        }








9. Additional I/O operators





1. The put() member function provides an alternative method of


    inserting a character into the output stream. 








2. The get() extracts and returns a single value from the input 


    stream.





        Here are some examples :





	            char ch;


            	 cin.get(ch);           	 // or ch = cin.get();


            	 cout.put(ch);





      // program to illustrate usefulness of get().


      // we would like to read a date of the form


      // say 12-10/1985


�



        #include <iostream.h>	


        int main(void)


        {


                int day, month, year;


                char ch;   


                cout<< "enter the date in the form DY-MH/YR"<<endl;


                cin>> day;


                cin.get(ch);    		// ch  holds  "-"


                cin>> month;


                cin.get(ch);    		// ch  now holds  "/" 


                cin>> year;


                cout<< "date entered is :"


                cout<< day <<" : "<< month << " : " << year<< endl;


	     return(0);


        }





        However problems arises when you need to read two or 


       more  inputs where each input is followed by a carriage 


       return.     Let's look at the following example:





         	cout<< " enter a number "<<endl;


         	cin>> number;


         	cout<< " is this the correct date  ==> : " << number << endl;


            ch = cin.get();





       After the number  has been read, the terminating newline symbol ( 


       carriage return ) remains in the input buffer.  When the prompt 


       "correct date ...." is displayed, the newline symbol in the 


       buffer will be taken as the reply and not what the user has typed 


       in!!.





        The solution:





          cout<< " enter a number "<<endl;


          cin>> number;


          cin.get(discard); 	 // we may assume that discard has been 


	                             	// declared as a character somewhere 


                             		// in the program





          cout<< " is this the correct date  ==> : " << number << endl;


          ch = cin.get();








Formatting output - setw( )  &   setprecision( )





To specify the amount of character positions that is occupied on the screen-


the standard use of  cout  may not be ideal for programs in which the space that a displayed number takes is important.  Eg- a histogram:





9 *********


10 **********





to get round this for integers, use setw  (set width)  which ensures that all numbers take up the same space  Eg:





#include <iostream.h>


#include <iomanip.h>    // needed for setw,setprecision


int main (void)


{


int a=9;


int b=10;


cout <<setw(4)<<a << "A" << endl;


cout <<setw(4)<<b << "B" << endl;


  etc





will display:


   9A


  10B





rather than:


9A


10B





I.e in setw, you tell it how many spaces to put the following item into, and it will be right-justified (set at the right) in that area.





Setprecision ...


is used in a similar way, but it can be used to fix the number of decimal places displayed  (i.e you might want to omit the least significant ones)





�



10. Program Design Language ( PDL )





We write algorithms for describing what a computer is to do in a 


language called pseudo code  or PDL.  The idea is that once 


designed, this pseudo code algorithm can be translated into any 


actual programming language.  The design therefore should be 


INDEPENDENT of the programming language.


All algorithms - 'programs', in some form or other, involve the concept of 


         


�SYMBOL 183 \f "Symbol" \s 12 \h�sequencing


�SYMBOL 183 \f "Symbol" \s 12 \h�selection


�SYMBOL 183 \f "Symbol" \s 12 \h�repetition


�SYMBOL 183 \f "Symbol" \s 12 \h�procedure/ function





10.1 Some algorithms involving sequences:





          Ex1. convert temp. in C to F





         	read c


          	multiply c by 9


          	divide by 5


          	add 32


        the above algorithm can be translated to any programming 


       language.





          Ex2. make a cup of tea





          	boil water


		make tea


          	put milk in cup


          	pour tea in cup





        The above is OK as a top-level algorithm for making tea. However 


        in order to give more detail, we must REFINE some of the 


       statements.





          Boil water





          	fill kettle


		switch on power


          	wait until it boils





          Make tea


         		


		put tea in pot


          	put water in pot


          	wait 2 minutes





        'fill kettle' could be similarly refined.  This is the essence of 


       Top-Down Stepwise Refinement.





10.2 Some algorithms involving selection


          Ex1. start the day





          	get up


          	if ( it is a weekday ) then


                		shave


           	endif


	          eat breakfast





        What if the  'endif' was placed after 'eat breakfast' ?





          Ex2. Determine pension rights





	          if ( age > 60  ) then


            	    calculate - pension - payable


	          endif





	          calculate - pension - payable


	          if ( sex is female ) then 


	                calc - women's - pension


	          else


	                check - for - man's - pension


	          endif





	          check - for - man's - pension


	            if ( age > 65 ) then 


	                  pay - man's - pension


	            endif


 





        Notice that these three procedures/functions could be collected 


        together to form one 'big' one :





	          determine pension rights


	            if (age > 60) then


	                  if ( sex is female ) then


	                          calc - woman's - pension


	                  else


	                          if ( age > 65 ) then


	                                  pay - man's - pension


	                          endif


	                  endif


	              endif


        Which of the two are more desirable and why?


�



        10.3 Some algorithms involving repetition


          Ex1. eat biscuits





	          open packet of biscuits


	          while ( there is a biscuit left ) do


	                take a biscuit


	                wipe up crumbs


	          endwhile


	          throw away packet.





        What is ' throw away packet ' was placed before ' endwhile ' ?





          Ex2. add up some numbers


	          set total to zero


	          read a number


	          while ( there is another number ) do


	                add the number to total


	          endwhile


	          print total





          Ex3. print the average of some numbers


	          set count to zero


	          set total to zero


	          read num


	          while ( num not equal to 0 ) do


	                add 1 to count


	                add num to total


	                read num


	          endwhile


	          set average to total / count


	          print average





          Ex4. print out  numbers 1 to 20


	          for num = 1 to 20 do


	                print num


	          endfor





          Ex5. display all the numbers 30 down to 10 squared


	          for num = 30 down to 10 do 


	                print ( num * num )


	          endfor





11. Program Style & Programming in Style 


        11.1 Program Style 





Good program  style  equals  clarity.  Clarity  equals  ease of debugging and ease of maintenance.  Good style means : good names, indentation,  gaps  between   functions,white space where appropriate, functions that are not too long, appropriate comments.  Above all, most  people seem to  agree that, within a program, the style should be consistent. For example, you might choose this layout :





	                if


	                then


	                else


	                endif





	        or this:





	                if


	                        then


	                        else


	                endif


but, whichever one you use, stick to it.  Prettyfiers are  commonly available on computers.  





11.2 Programming in style


        The classic stages of program development are:





	        specification


	        design


	        coding


	        debugging and testing


	        maintenance





 


 One element is  missing -  write the documentation. Very often documenting a program is left until the very end. If so, it can   become very boring and be done badly (or ignored). Good style guideline - do the documentation as you go along.  Typically, in  a commercial environment, the coding phase of programming only takes about 10% of the total development time.  So,  in  fact, programmers  spend  very little time doing    "programming".  





	Compare two programmers efforts at developing the same   program:


	                Tom    sss ddd ccc dtdtdtdtdtdtdtdtd


	                Alice   sss ddddddd cc dtdt


         Alice spent  longer on  design,  but the  effort  repaid itself  overall by cutting down on  debugging and testing. She finished  first. Style guideline - spend longer on design.  


Computers are fun things. It can be very tempting to stay at the keyboard, experimenting with different fixes to a faulty program.  This can be very wasteful of  time as the programmer repeatedly  tries one thing after another to no avail. The alternative would be to get hard copy, leave the machine, get a cup of coffee, take time to look  at the program  afresh. Style  guideline  - take a  break from the machine.  


 


Writing and testing new software takes  a long time. One way to  avoid this (but  maybe not as  much fun) is  to re-use existing  software. This can be either an old program or one out of a book.  Style guideline - re-use.  








12. Functions


  Why functions?





  There are several advantages of using functions :





           i. using functions makes the program modular - a program, 


            especially a large one, can be partitioned into several 


            functions.


          ii. each function call represents a "higher" level instruction 


            than C++ statements because it typically encapsulates 


            several C++ statements.


          iii. functions encourage code sharing since a function can be 


            called from several places in the program - the code in the 


            function body does not have to be replicated.  And if 


            functions are stored in separate files, then they can also 


            be "reused" in other programs.





        12.1 Function declarations and prototypes


        As in the case of variables and constants, a function must be 


        declared before it can be referenced.  Function declarations are 


        called "prototypes".  A prototype must match the corresponding 


        function definition.  A prototype  contains information that a 


        C++ compiler can use to ensure that the function is called 


        correctly.  By looking at the prototype, you can tell exactly 


        what type of information the function expects, and what type it 


        returns.   here are some examples:


	        void show_menu(void);


	        int power2(int);


	        float area_of_circle(int);


	        char get_employee_type(int);


        The above form is correct, and widely used.  However, it is also


       possible to mention variable names is the prototype.  Consider a


      program which draws a circle, given the 2 centre coordinates and 


       the radius:


               void drawcircle(int, int , int);   // which is which?


       C++ also allows is to clarify, by:


               void drawcircle(int x, int y, int radius);





        12.2 Function definitions





	          result_type  function_name   (parameter_declarations)


	          {


	                statements


	          }





        Here are some examples of functions:


�



        // this function takes no formal arguments and returns nothing.


          void show_menu(void);


          {


                cout<< " 1- customer bookings "<< endl;


                cout<< " 2-  chartered flights " << endl;


                cout<< " 3 - cancellations " << endl;


          }





        // this function takes an integer as its argument and doubles


        // the number as it's returned value


          int power2( int num)


          {


                return ( num * 2);


          }





        // this function takes an integer as its argument for the radius 


        // of a circle, then calculates the area of that circle and 


        // returns its value 


          float area_of_circle(int radius)


          {


                const pi = 3.14;


                float circle_area;


                circle_area = ( pi * radius * radius );


                return (circle_area);


          }





        // add two integer values


        int add_two(int n1, int n2)


        {


                return(n1 + n2);


        }





        //  program to calculate the square root of a number :-














�



          // calculating the sqroot, using  functions


          #include <iostream.h>


          #include <math.h>             // needed for sqrt()


          #include <conio.h>            // needed for clrscr();


          int main(void)


          {


                float sqroot(int);      // prototype


                void clrscr(void);      // built in, prototype


                int num;


                clrscr();


                cout<< " type your number "<< endl;


                cin>> num;


                cout<< " the sq.root of " << num << "is  "<< sqroot(num);


                cout<<endl;


	    return(0);


          }





          float sqroot( int digit)


          {


                return (sqrt(digit));


          }





       // design and write a program to convert a temp.


       // in C to F




















�



       // here is the actual program in C++


       // c converted to f


          #include <iostream.h>


          #include <conio.h >           // for clrscr


         int main(void)


          {


                float convert_temp_to_fh(int);  // function prototype


                void clrscr(void);              


                int c;


                float fh;


                clrscr();


                cout<< " Type in temp. in c "<<endl;


                cin>> c ;


                fh = convert_temp_to_fh(c);


                cout<< "temp. converted to f = "<< fh << endl;


	    return(0);


          }





          // function convert_temp_to_fh


          float convert_temp_to_fh(int temp)


          {


                float converted = (temp * 9) / 5.0 + 32 ;


                return (converted);     // local variable


          }





          // simple program to display a simple message





          #include <iostream.h>


          int main(void)


          {


                void display_msg(void);         // function prototype


                display_msg();


	    return(0);


          }





          void display_msg()


          {


                cout<< " GIVE PEACE A CHANCE !! "<< endl;


          }





12.3 Functions and passing arguments by reference


Under pass_by_value, the contents of the actual arguments are not changed. For example in the previous example, where we converted a temperature in centigrade to Fahrenheit, the value of  c did not change, but the function "convert_temp_to_c" returned a  value as the result of its evaluation.  Pass_by_value, however, is not suitable for every function.  





The 'return' keyword can pass a single result (eg  1 float, int, char...) back to the calling program - see the 'bigger' example.   In this function, we pass in 2 values.  The function itself doesn't need to know where the values originally came from (which variables they were stored in).





But sometimes we need to pass back more than 1 result, or need to pass a variable to a function and get the function to alter that particular variable.  In these cases, we pass the address of the variable - pass by 'reference'.


In the following, we have 'swap', which interchanges 2 variables - it needs to know the original place of the 2 variables,  and we have sum_diff, which needs 2 inputs, and also 2 places to put its 2 answers.





#include <iostream.h>


void swap(int&  a, int&  b);       //prototypes


void sum_diff(int n1, int n2, int& sumanswer, int& diffanswer);





int main(void)


{


// set up some vars for the demonstrations:


int a=3, b=4;


int pay=1000, salary=2000;


int sum,diff,max,min;





swap(a,b);


swap(pay,salary);





sum_diff(a,b,sum,diff);   // answers go to sum, diff


sum_diff(pay,salary, max,min);    // answers go to max, min





return 0;


}





//-----------------------------------------------------


void swap(int&  a, int&  b)


{


   int temp;


   temp=a;


   a=b;


   b=temp;


}





//--------------------------------------------------


void sum_diff(int n1, int n2, int& sumanswer, int& diffanswer)


{


   sumanswer=n1+n2;


   diffanswer=n1-n2;


}





//---------------------------------------------------














13. Control structures





        C++ statements is classified into one of three control  structures:


	Sequence,


	Selection,


	and Iteration.      








The new program control structures of selection and iteration  permit us to process data with structures other than sequential.





13.1 Conditional execution ( selection)


C++ provides two facilities for "conditional" execution :


	             i) if statement


	            ii) switch statement





13.1.1 if statement


The if statement can be with or without the "else" clause.


      	    if ( expression )


	                statement;       // without an else	





          or


	          if ( expression )


	                  statement;


	        else  	                // with an else


	                  statement;





        Here are some examples :


          if ( x < 0 )


                cout << x << "  is -ve " << endl;





          if ( x == 0 )


                cout<< " x is zero " << endl;


          else


                cout<< " x is not zero " << endl;





          if ( a < b )


                cout<< " originally, a less than b " << endl;


          else


          {


                int temp = a;


                a = b;


                b = temp;


                cout<< " a and b are now interchanged " ;


          }














        // design and write a program to read two numbers and display 


        // them in ascending order.





        Algorithm





        Top_level


          print " type in two +ve integers ", newline


          read  first_number  and second_number


          if (first_number < second_number) then


                display first_number , second_number


          else


                display second_number, first_number


          endif





          // The actual C++ program


          #include <iostream.h>


          int main(void)


          {


                int first_number, second_number;


                cout<< " type in two +ve numbers " <<endl;


                cin>> first_number >> second_number ;


                if (first_number < second_number)


                        cout<< first_number << second_number << endl;


                else


                        cout<< second_number << first_number << endl;


	    return(0);


          }





13.1.2 Switch statement





           The switch statement allows the programmer to specify multi_way branching, instead of two_way branching.  The general form of the switch statement statement is :





	          switch ( expression )


	          {


	                case label1 : statement(s)1; break;


	                case label2 : statement(s)2; break;


	                ........


	                ........


	                ........


	                ........


	                case labels: statement(s)N; break;


	                default    : statement(s); break;        // none of the above


	          }








        Consider the following examples:





          //switch in action !


          char action;


          float amount;


          long account;


          ....          //other sections/parts





          switch (action)


          {


                case 'b' : balance(account); break;


                case 'd' : deposit(amount, account); break;


                case 'w' : withdraw(amount, account); break;


                case 'e' : summary(account); break;


                default  : error(account); break;       		// if none of the  above


           }





            // design and write a program to read a number (between 1 and 12


// and display the corresponding month in words





          Can we use the if statement ?


        Why switch seems to be more appropriate ?





          // here is the program


          #include <iostream.h>


          int main(void)


          {


                void print_month(int);  // function prototype


                int month;


                cout<< "type a number between 1 and 12 " << endl;


                cin>> month ;


                print_month(month);


	    return(0);


          }





          void print_month(int m)


          {


                switch (m)


                {


                        case 1  : cout<< " January " << endl; break;


                        case 2  : .......


                        ..........


                        case 12 : cout<< " December " << endl; break;


                        default : cout<< " out of range " << endl; break;


                }


          }


�



13.3 Iteration


C++ provides three kinds of iteration statements:





	           the while statement


	          the for statement


	          the do_while statement








        13.3.1 The while statement


        The syntax of the while statement is:





	          while (expression)


	          {


	                statement1;


	                statement2;


	                .....


	                ...


	          }





        The while statement is executed by first evaluating the control 


        expression within the parentheses.  If the result is true, then 


        the body of the loop is executed.  The entire process is then 


        repeated starting once again with evaluation of the expression.  


        When the expression is 0 (false) the loop terminates and the 


        program continues execution with the next statement.  





        Here are some examples:


             Design and write a program to read a sequence of chars and 


          echo to screen


          Pseudo code algorithm


          Top_level





	          print " type in a character, the terminator is full_stop "


	          read ch


	          while (ch not equal to full_stop) do


	                write ch


	                read ch


	          endwhile


�



          // Here is the program


          #include <iostream.h>


          const char full_stop  =    '.'     // this is for better readability


          int main(void)


          {


                char ch;


                cout<< " type in a character, the terminator is 


                         full stop"<<endl;


                cin>> ch;


                while (ch != full_stop )


                {


                        cout<<ch<<endl;


                        cin>>ch;


                }


	    


 	    return(0);


          }


        //Design and write a program to read a series of +ve 


        //numbers and form their sum





         Algorithm


          Top_level


	          read number


	          set sum to zero


	          while    (number >= zero )    do


	                sum = sum + number


	                read number


	          endwhile


	          print sum	





          // program to read a series of integers and produce their sum


          #include <iostream.h>


          const char zero  =0       // for readability


          int main(void)


          {


                int number, sum = zero;


                cout<<"type in a number, terminator is zero"<<endl;


                cin>> number;


                while ( number >= zero)


                {


                        sum = sum + number ;


                        cout << any more? terminator is zero."<<endl;


                        cin>> number;


                }


                cout<< "The sum is = "<< sum<<endl;


	    return(0);


          }





          //Design and write a program to read a series of numbers and


        //test if they are prime.





          Algorithm


          Top_level


        


                FOR YOU TO DO!





          // Here is the program. check for prime


          #include <iostream.h>


          int main(void)


          {


                int prime(int);         //prototype


                int num;


                cout<<"type in a +ve integer, terminator:-ve number"<<endl;


                cin>>num;


                while ( num > 0)


                {


                        if ( prime(num))


                                cout<<num<<" is prime"<<endl;


                        else 


                                cout<<num<<" is not prime"<<endl;


                        cout<<"any more ?"<<endl;


		return(0);


                }





          int prime(int n)


          {


                int num_does_not_divide(int, int);      //prototype


                int not_divisible = 1, j=2;


                while ( (j=< n-1) && (not_divisible) )


                {


                        if (num_does_not_divide(n, j))


                                not_divisible = 0;


                        j++;


                }


                return(not_divisible);


          }





          int num_does_not_divide(int digit, int count)


          {


            


                return ( (digit % count) == 0);


          }


�



13.3.2 The for loop





The syntax of the for loop is given by:


	          for( exp1;  exp2; exp3 )


	          {


	                statement(s);	


	          }





          exp1;         ===> initialise the loop


          exp2;         ===> evaluated and if true, statement(s) is 


                                   executed


          exp3;         ===> frequently used to update loop control 


                                   variable before repeating the loop





        Here are some examples:





          for ( int k = 1; k <= 10; k++)


                cout<< " the square of " << k <<" is "<< (k*k)<<endl;





          for ( int count = 20; count >= 0 ; count--)


                        cout<< count << " is doubled : "<< count*2<<endl;





          const max = 35;


          sum =0


          for (int i=0; i<= max; i++)


          {


                sum = sum + i;


                double_sum = sum * 2;


          }





          //program to compute the mean of 10 +ve numbers


          #include <iostream.h>


          int main(void)


          {


                const int max = 10;


                int num, sum = 0;


                float mean, count;


                cout<< " type in ten +ve numbers " << endl;


                for ( count = 1; count <= max; count++)


                {


                        cin>> num;


                        sum = sum + num ;


                }


                mean = sum/(count - 1);


                cout<< " the mean is = "<< mean<<endl;


	     return(0);


          }





          // program to output 50 numbers, selected randomly


          #include <iostream.h>


          #include <stdlib.h>   // needed for "randomize" and "random"


          int main(void)


          {


                const max = 50;


                int num;


                cout<< " type in a number, between 0 to 99 " << endl;


                cin>> num;


                randomize();


                for ( int  i = 0 ; i< max; i++ )


                        cout<< random(num) << " , ";





                cout<< endl;


	    return(0);


          }





Important: if you have 2 or more for-loops in a function,  and you wish to use the same loop-count variable, then you can't put:


    for (int n=0; n<11;n++)


    for (int n=3; n<8; n++)


because C++ assumes that you are trying to declare the variable twice.  A solution is to declare the variable as local, as in:


    int n;


    for (n=0; n<11;n++)


    for ( n=3; n<8; n++)





13.3.3 The do_while statement





          As previously noted, the "while" and "for" statements test the 


        condition(expression) before obeying the loop, where as with the 


        "do_while", the conditional test is performed after executing the 


        loop.  In a small number of cases, checking is required at the 


        conclusion of the loop body.  In these cases the "do_while" 


        statement is the appropriate construct.  The "do_while" statement 


        has the form :


	          do


	          {


	                statement1;


	                statement2;


	                .......


	                .....


	          }


	          while (expression)





        Here is an example:


        Consider a program to read a single integer number and to 


        output the digits of that number in reverse sequence.  For 


        example, if the input value is 1234, then the output is 4321.


�



        //output the digits in reverse order


          #include <iostream.h>


          int main(void)


          {


                int number, digit;      // data value, rightmost digit


                cin>> number;           // input data value


                do


                {


                        digit = number % 10;    // obtain rightmost digit


                        cout<< digit<<;


                        number = number / 10;   // reduce number


                }


                while ( number != 0);


                cout<<endl;


	         return(0);


          }








        We might have considered coding the problem with a " while " 


        statement:





	          cin>> number


	          while ( number != 0)


	          {


	                digit = number % 10;


	                cout<<digit;


	                number = number / 10;


	          }





        The same input number 1234 produces the same output 4321.


        However, note what happens if the input value is 0 (zero). Since 


        the "do_while" is obeyed once, the output is 0.  However no 


        output is produced with the "while" statement.








14. Don't use global data





Introduction


        Just  as  the  infamous  goto  statement   was  discredited,  so  


        current ideas  of  software engineering  regard  global data  as  


        harmful. These notes give arguments against using global data.  


        Global data  is the  data that  is declared  at the  top of  the  


        program. It can  be used throughout  the program. Local  data is 


        data that is  declared and  can only be  used within  a specific 


        procedure access is  closely controlled.  Data that  is declared 


        locally very  often  has to  be  passed  around the  program  as  


        parameters. For  any particular  program, the  designer has  the  


        choice of making data global or local.


14.1 Functions and procedures


        are a way of building large programs form small pieces. Software 


        is complex and  very often  the only  way we  can understand  it 


        clearly is  if it  has  been constructed  from small  manageable  


        pieces. Let's look at an illustrative function to interchange the 


        values of two integers.  





	               int x, y;


	               int temp;


	               int main(void)


	               {


	                     void swap(void);   // prototype


	                     x=56;


	                     y=23;


	                     swap();


	                     cout<< x << ", " << y << endl;


		         return(0);


	               }


	       


	               void function swap()


	               {


	                     temp=y;


	                     y=x;


	                     x=temp;


	               }


          The variables x, y, temp are global data items. 





14.2 Local data


        If the variable temp is  only used within the function  swap, we 


        can declare it as local: 


	               int x, y;


	               int main(void)


	               {


	                     void swap(void);


	                     x=56;


	                     y=23;


	                     swap();


	                     cout<< x << ", " << y << endl;


		         return(0);


	               }





	                void function swap()


	               {


	                     int temp;


	       


	                     temp=y;


	                     y=x;


	                     x=temp;


	               }


       


        so that now temp is a local variable. It  is declared within the 


        particular function and can only be used within that function.  


        The other thing of interest about local items  is that they only 


        enjoy a very short lifetime. A local variable is created when its 


        function is entered and is destroyed when the function is exited 


        from. It only has a temporary existence.  





     Generally local data is good because:





�SYMBOL 183 \f "Symbol" \s 12 \h�	the global  data (if  any) is  easier to  read because  there is   less of it.  


�SYMBOL 183 \f "Symbol" \s 12 \h�	it  is easier  to  read an  individual  function, because  it is clearer exactly what it is using.  


�SYMBOL 183 \f "Symbol" \s 12 \h�	a function can be removed more easily to use in another program because it is self-contained .


 


14.3 Parameters


        Looking again  at the  function swap,  we can  improve it  still  


        further if we give it parameters: 





	               int main(void)


	               {


	                    void swap(int &, int &);    //prototype


	                    int x=56;


	                    int y=23;


	                    swap (x, y);


	                    cout<< x << ", " << y<< endl;


		             return(0);


	               }





            	   void function swap(int &a, int &b)


	               {


	                    int temp= b;


	                    b= a;


	                    a= temp;


	               }





    Parameters are good because:


         we spell out very clearly what a function acts upon.  we  can  


        easily  re-use  the function,  either  within  the  same  program 


        or a new program.  We are not using global data 


        for communication.  Users of  a function  do not  need to  


        know what  names are used  within the procedure 





14.4 Global data is harmful


            How do we  study a  program? We cannot  look at  it all at  once 


          because our brains are too small; we are forced to look at it in 


          fragments. We prefer to have  all the information in  one place, 


          rather than scattered about. If a program  has global data, then 


          we are forced to look at two places at once - the function we are 


          studying plus the  global data.  A program  that is  constructed 


          using functions, parameters and local data is clear and simple.  





Here is  the  final  argument  against global  data.  A  program consists of three functions named A, B, C . Suppose that we want to study function A. Suppose that functions A and B both access a piece of global data named  X. Then in order to  understand A we have to  understand  the  role  of  X.  But, now,  in  order to understand X we have to examine B. So we end up having to study a second function (B), when we only wanted  to understand one. But the story gets  worse. Suppose  that functions B  and C share a data item in the global data. Then to fully understand B we have to understand C, and so on. We see that in  order to comprehend any individual function  that  uses  global  data we have  to understand all the functions that use it.  So, in general, the amount of global data  should be minimised (or abolished) and the local data maximised.  


14.5 When to use global data


         In a program to play the game of chess, for  example, it is very 


        likely that each  and every  function would  refer to the  data 


        structure that  holds the  chess  board. It  would be  perfectly  


        possible to declare  the data structure  locally and to  pass it 


        around the  program as  parameters.  But this  is probably  more  


        complicated than declaring it as global.  


        So, when most or all of the functions in a  program use the same 


        data item, is reasonable to use global data.  


 14.6 Declaring the functions that are used by a function


         In C++, a function must be declared before it  is referred 


        to.  One approach is to give the complete list of 


        function definitions at the beginning of  the program,  after 


        the  include's. Just  like global data, this is rather 


        indiscriminate.  Certainly, if there are functions that are used 


        by the  majority of other functions, then it seems valid to  


        declare them at the top  of the program.  Otherwise it  


        seems  better to  declare  the  functions that  an  


        individual function uses at the top of the function. This matches 


        up with the  policy of having  all the information  necessary to 


        understand a function in one place (within the function).  


        


        However, the approach used in big 'real-life' programs is to create 


        a file containing  only the prototype lines, and then to #include this file, 


        at the start of the program.  This is used by, eg <iostream.h>.  The 'h'


        means a header file, containing protoypes.


Discussion points


        Do you agree with the suggestions given above?


        


15. How to use graphics in C++  (DOS only - NOT NOT! Windows)


        If we want to use graphics  with Turbo C++, we must:





1st :    load the appropriate graphics driver and set the video mode: to do that we use the initgraph()  function:





                 initgraph(&graphdriver, &graphmode, graphpath)





        Here, "graphdriver" stands for a graphics driver, and there is a 


        different one for each video card. Here are some graphics 


        drivers:  CGA, EGA, VGA, MCGA, IBM8514.


        The constant "graphmode" defines the actual video mode 


        ( e.g 320*200 palette 0, 640*200 16 color).  


        The "graphpath" variable is a string indicating where the driver 


        software ( files with extension .BGI) for the particular monitor 


        is to be found.





        Therefore to initialise graphics we may write the following :





	          #include <graphics.h>


	          int graphdriver = DETECT, 


	              graphmode ;


	          initgraph(&graphdriver, &graphmode, "");





15.1 Selecting colors





        There are 16 predefined constants ( in graphics.h) for the 16 


        default colors:


                BLACK         RED              DARKGRAY         LIGHTRED        


                BLUE            MAGENTA    LIGHTBLUE        LIGHTMAGENTA


                GREEN         BROWN      LIGHTGREEN       YELLOW


                CYAN          LIGHTGRAY  LIGHTCYAN        WHITE





         Select  function  "setcolor()" for drawing the color of your 


        choice:


	          setcolor(BROWN);


         From then on, the drawing color remains brown until we change it.


        We can also select the background color by using "setbkcolor()" 


        function :


	          setbkcolor(MAGNETA);





15.2 Drawing


         The screen co-ordinates are referred to as "x" for the horizontal 


        line and "y" for the vertical line, as in  graph 


        representation in mathematics. However, the starting co-


        ordinates, (0, 0) refer to the top-left side of the screen, and 


        not the bottom left as in mathematical graphs.





        Let's review the major graphics functions:





	          getmaxx(); and getmaxy();


	            //returns the maximum x  and y screen co-ordinates for  


                      //the current graphics driver and mode.  For example, on a 


                    //CGA in 320*200 mode, "getmaxx" returns 319.





	          putpixel(x_location, Y_location, color_val);


	          // sets a pixel of color "color_val on the screen.





	          moveto(x_location, y_location);


	          //moves the cursor to the specified location





	          lineto(x_location, y_location);       


	          //draws a line from current location to a new location





	          rectangle(x_top, y_top, x_bottom, y_bottom);





	          ellipse(x, y, start_angle, end_angle, x_radius, y-radius); 


	          //where start_angle is 0 and end_angle is 360.





	          circle(x, y, radius);





	          floodfill(x_location, y_location, border_color_val);


	          //we can color our "figures" with "floodfill".  The 


	          //"floodfill()"function will fill the "figure" until it 


	         //encounters that color, which makes up the border.





          //here is a program to illustrate  some of the graphic 


          //facilities





          #include <iostream.h>


          #include<graphics.h>         //for functions circle and ellipse


          #include <dos.h>             // for delay and sound


          int main(void)


          {


                int i, j=60 ;





                //initialisation of graphics


                int graphdriver = DETECT, graphmode;


                initgraph)&graphdriver, &graphmode, "");





                //draw circles in different colors


                for (i=1; i< 50; i++)


                {


                        setcolor(GREEN);


                        circle(j, 2*j, 2*i);


                        setcolor(RED);


                        circle(3*j, 2*j, 2*i);


                        setcolor(GREEN);


                        circle(5*j, 2*j, 2*i);


                        j++;


                }


               // cont:





                //play sound


                for (i=100; i<2000; i=i*2)


                {


                        sound(i); delay(1000);


                }


                nosound();





                //draw ellipse


                setcolor(WHITE);


                for (i = 90; i>20; i--)


                        ellipse(320, 200, 0, 359, j+(2*i), j);


                delay(1000);


                closegraph();           // close graphics


	    return(0);


          }


          // end of program for graphics








16. Programming in the large





Writing  large programs poses difficult problems of organisation.  C++ provides constructs ( modules) to partition large software systems into reasonable sized components - often called objects, or classes. At a lower level, it supports  separate compilation of program units and make it possible to assemble libraries of sharable components.  The use of such constructs to impose structure on large programs is often called "programming in the large".  A C++ program almost always consists of several separately compiled "modules".  Each  "module" - commonly referred to as a source file - contains a sequence of declarations of  functions, variables, and constants.  An "extern" declaration allows a function defined in one source file to refer to another source file.  


	For example :


	            extern int area_of_a_rectangle(int, int);


          	extern float area_of_acircle(int);





The most common way of ensuring consistency between source files is to place such declarations in separate files, called "header" files, and to include those header files in all files needing the declarations.  For example, the declaration of "sqrt" is stored in the header file for the standard mathematical functions "math.h", so if you want to take the square root of 4, you can  write:


	          #include <math.h>


          	// .....


	         x = sqrt(4);


A header file is a repository for type information, it provides an interface between separately compiled parts of a program.  A file name enclosed in angle brackets, such as <math.h>, refers to the file of that name in a standard include directory.  Files elsewhere are referred to by names enclosed in double quotes.


For example :


	        #include "maths1.h"


  	        #include "/usr/bsc/maths2.h"





         would include "maths1.h" from the user's current directory and 


         "maths2.h" from the directory /usr/bsc.


         Here is a small but complete example.  The file maths1.h defines the types needed:


	          // header file maths1.h


	          extern int area_of_a_triangle(int, int);


	          extern int double_num(int);





        The file "main_a.cpp" is the main program:


        


	 // main_a.cpp


          #include <iostream.h>


          #include "maths1.h"


          int main(void)


          {


                cout<< " area of a triangle with base 6, and height 4 = "


                    <<area_of_triangle(6, 4);


                cout<< " 5 doubled is = " << double_num(5);


	    return(0);


          }





        The files containing the functions included in the header file:





	           //file name : triangle.cpp


	          float area_of_a_triangle(int b, int h)


	          {


	                int area = (b * h ) / 2.0);


	                return ( area);


	          }





	          //file name : dble.cpp


	          int double_num(int num)


	          {


	                return(num*2);


	          }





In order to compile, link and run the above with Turbo C++, you need to see the separate sheet, describing the current version of C++





17. Array types





         An array is a collection of objects of a single data type.  The 


        individual objects are not named; rather, each one is accessed by 


        its position in the array.  This form of access is referred to as 


        indexing. 


        For example,


	          int i;      	   	====> declares a single integer object              


	          int i1[ 10 ];     	====> declares an array of 10 integer  objects.





        Each object is referred to as an element of "i1".  Thus


	          j = i1[2];    	 ====> assigns j the value stored in the  element  "i1"


                                                                    indexed by 2.


	          i1[7] = 10;    	====> i1 indexed 7 has value 10








17.1 Array initialisation


         Here are some examples:


	          const array_size = 3;


	         int array_list[ array_size ] = {0, 1, 2};


         If the size of an array is greater than the number of listed 


        elements, the array elements nor explicitly initialised are set 


        to zero:


          	// array_num 		===> {0, 1, 2, 0, 0}


           	const array_size = 5;


	            int array_num [array_size]  =  {0, 1, 2};


        A character array may be initialised with either a list of 


       comma separated character literals or a string constant:


	          char ca1[3] = { 'c', '+', '+'};


          or


	          char ca2[4] = "c++";


	          char ca3[3] = "c++";          // error





The string constant contains the additional terminating null  character.





 There are two ways of storing data in an array:





          1 direct input,


            	    cin>> table[5];        


          


          2 indirect input,


	                int num, count = 0;


	                cin>> num;


	                while ( num > 0 )


	                {


	                        table[count] = num;


	                        count++;


	                        cin>> num;


	                }











17.2 Accessing an element of an array





        some examples :


	        for (int i= 0; i<=20; i++)


	              if ( table[i] % 2 == 0)          		 // check for even


	                   cout << (table[i] * 2)<<endl;


	              else


	                   cout << (table[i] * table[i])<<endl;


          


	        if ( table[1] > table[5] )


	                cout << " first is greater than the fifth " << endl;





To copy one array into another, each element must be copied.  For example,





	        const array_size = 7;


	         int num_list[array_size] = { 0, 1, 2, 3, 4, 5, 6 };





	         int main(void)


	         {


	               int num_list2[array_size] ;


	               for (int ix = 0; ix <= array_size; ix++)


	                       num_list2[ix] = num_list[ix];


		   return(0);


	         }





17.3 An array argument





Arrays in C++ are never passed by value.  Rather, an array is 


passed as a pointer to its  first element.  For example,


                void putvalues(int queue[10]);


is treated by the compiler as having been declared as


                void putvalues(int *queue);





The array's size is not relevant to the declaration of the formal 


argument.  The following three declarations are equivalent:


                void putvalues(int *m);


               void putvalues(int m[]);


               void putvalues(int m[10]);





There is no checking for array size!  By convention, string 


character arrays encode their termination point with a null 


character.  All other array types, however, including character 


arrays, which wish to handle embedded nulls, must in some way 


make their size known when passed as formal arguments to a 


function.  One common method is to provide an additional 


argument that contains the array's size. 


For example,


	


                       void putvalues(int m[], int size);


             


	            //"putvalues()" prints out the values of an array.


	          void putvalues(int m[], int size)


	          {


	                for(int i = 0; i<= size; i++)


	                        cout<< m[i]<< ", ";


	                cout<<endl;


	          }





17.4 Multi  dimensional arrays


A two- dimensional array can be pictorially thought of boxes arranged in rows and columns.  A two-dimensional object that  many are familiar with is a "tic-tac-toe" board.  The array   declaration 


	                const row = 3, col = 3;


            	    char tictac[row][col];





allocated storage for a two-dimensional array with three rows and 


three columns.  This array has nine elements, each of which must 


be referenced by specifying a row subscript (0, 1 or 2) and a 


column subscript (0, 1 or 2).  A two dimensional array is also 


referred to as a matrix.  





Multi-dimensional arrays may also be initialised.


	            char tictac[row][col] = { {' ',' ',' '}, {' ',' ',' '}, 


            	   	                                  {' ',' ',' '} };





	            int two_dim[4][3]= { {0, 1, 2},


           	                                    {3, 4, 5},


                              	           {6, 7, 8},


                                    	           {9, 10, 11} };





The nested braces, which indicate the intended row, are optional.  


The following initialisation is equivalent, although less clear.


         


	     int two_dim[4][3] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};





The following definition initialises the first element of each 


row.  The remaining elements are initialised to 0.





                int is[4][3] = { {0}, {3}, {9} };





Were the nested braces left off, the result would be very 


different:


                int ss[4][3] = { 0, 1, 2, 3};





Initialises the first tree elements of the first row and the 


first element of the second row.  The following pair of nested 


loops initialises a two dimensional array:





	          main(void)


	          {


	                const row_size =4;


	                const col_size = 3;


	                int aa[row_size][col_size];


	


	                for ( int i = 0; i< row_size; ++i )


	                        for ( int j = 0; j < col_size; ++j )


	                                aa[i][j] = i + j ;


	          }





A multi-dimensional array declared as a formal argument must 


specify the size of all its dimensions beyond that of its first.  


For example,


                void put_values( int matrix[][10], int row_size)


 itAs we have stated, arrays are susceptible to programming errors - the subscript checking is non-existent - so it is common in C++ to use its features to create a more secure array class.  You may be provided with such a class.


�



Exercises





A first C++ program


Get on a PC. Get into the C++ system. Type in the shortest of C++ programs. Compile it and run it. Use the editing system to alter it, compile it and run it again. Save your program in a file on your disc. Load it again into the C++ system and run it. Make sure you can do all these things confidently before moving on to bigger programs.





Input


Write a program to input 2 numbers and then display them. Enhance the program so that it


	displays the numbers in reverse order


	displays the sum of the numbers


	displays text output as well as the numbers





Arithmetic expressions


Write programs to:


	input the dimensions of a rectangle (integer numbers) and display its area





	input the dimensions of a rectangle (integer numbers) and display its area and 	perimeter.





	same as above but with real number dimensions





	input the radius of a circle and display its area





Additional I/O operations


Write programs to:


	input 3 characters and display them in reverse order





Program Design Language (PDL)


Write pseudocode to:


	input the dimensions of a rectangle and display its area





	input the dimensions of a rectangle and display its area and perimeter.





	input the length of the side of a square and display its area. Produce an error 	message if the length is negative.





	input three numbers and display either an "all 3 equal" or a "not all equal" message


	input 3 numbers and display the biggest





	display the numbers 1 to 100 inclusive, using a while loop


	display the numbers 1 to 100 inclusive, using a for loop.





	input 2 values into the variables called start and finish. Then display the integers 	from start to finish inclusive. Use the for 	statement.





	same as above, but if start is bigger than finish, don't display the numbers but 	instead display an error message





	input 10 numbers and display their total





	input 10 numbers and display their total. But any numbers greater than 100 should  be ignored.





	input a count, which specifies how many numbers will follow it. Display the total of 	the following numbers. For example,


	 	the input might be 4  33 52 67 83





	input a series of positive numbers, ended by a negative one. Add up the numbers and print the total. The negative one is not to form part of the sum.





	input 100 positive numbers. Add up the numbers and display the total. If a negative number is encountered, the program  should terminate and display the total so 	far.





Program Style


If there is a program prettyfier on your computer system, make sure you have a play with it. Does it lay out your program in a style that you like?





Draw up some style guidelines for C++ programs. See whether your colleagues agree with your guidelines. Look at other people's programs to see what styles are possible.





Check that you know what the classical series of steps are in the development of a program.


Discussion: is it worthwhile trying to adopt a systematic approach to program development?





Functions


In your own words, explain what a function is and what parameters are. 


Use 'Functions' to do the questions under  "input" and "arithmetic expressions".


Type the following program and get it running:


	


		#include<iostream.h>


		#include<math.h>


		int main(void)


		{


			cout<<pow(2, 4)<<endl;


			cout<<pow10(3)<<endl;


			cout<<abs(-20)<<endl;


			return(0);


		}





On line 'help' facility.  "pow", "pow10" and "abs" functions are some of the built in mathematical functions, they can be found in the <math.h> header file.  Place the cursor on <math.h> and press the keys:  <Ctrl> and F1.  This will display a list of all the functions in <math.h>.  'Click' , say, on "sqrt" function twice and you should see all the information about that function.  You can also look at any of the built in functions directly from the "edit window".  Place the cursor, say on "pow" function and press the keys: <Ctrl> and F1.


Navigate through the help facilities and the various header files.





Design and write a program which will read a sum of money and use a function to increase that sum by 10%.





Design and write a program which uses a function to calculate the new price for an article given the full price and a percentage discount.





Design and write a program which will read a temp. in degrees Fahrenheit and use a function to convert it to degrees Centigrade.





Write and test a function that takes a time, expressed in hours, minutes and seconds and converts it into seconds.





Control Structures


Develop C++ programs  to:





	input the dimensions of a rectangle and display its area





	input the dimensions of a rectangle and display its area and perimeter.





	input the length of the side of a square and display its area. Produce an error 	message if the length is negative.





	input three numbers and display either an "all 3 equal" or a "not all equal" message





	input 3 numbers and display the biggest


	display the numbers 1 to 100 inclusive, using a while loop


	display the numbers 1 to 100 inclusive, using a for loop.





	input 2 values into the variables called start and finish. Then display the integers 	from start to finish inclusive. Use the for 	statement.





	same as above, but if start is bigger than finish, don't display the numbers but 	instead display an error message


	input 10 numbers and display their total


	input 10 numbers and display their total. But any numbers greater than 100 should 	be ignored.





	input a count, which specifies how many numbers will follow it. Display the total of 	the following numbers. For example, 


	the input might be 4  33 52 67 83





	input a series of positive numbers, ended by a negative one. Add up the numbers 	and print the total. The negative one is 	not to form part of the sum.


	input 100 positive numbers. Add up the numbers and display the total. If a negative 	number is encountered, the program  should terminate and display the total so far.





Global data


Discussion:


Do you agree with the suggestions given in the notes?


Are there occasions when global data is vital? If you think so, give an example.





Graphics Programming


Doing graphics programming is fun and a good way of experiencing using library functions. One of the best ways of finding out what functions are available (and how to use them) is to use the help system. Also the demo program is worth running and you can study the source code.


Try:


	drawing a line from one position to another


	drawing a rectangle


	draw another rectangle in another colour


	draw a circle


	draw dots (pixels) at random positions


	draw a circle that moves around the screen, bouncing off the edges like a ball





Programming in the large


When is a program small; when is it large? What is the point in separate compilation and linking?


We hope to set up a small practical exercise of dealing with programming in the large.





Arrays


Develop the following c++ programs. The following assume two integer arrays, a and b, with elements a[0] to a[99], and b[0] to b[99]


	


set every element of b to zero


	set a[0] to 0, a[1] to 1, a[2] to 4, a[3] to 9 etc.


	input 100 numbers and store them in a.


	input a count. Then input the data values, storing them in a. If the count is above 100, the program should terminate 	without reading any numbers.





	read a series of positive numbers into a. The numbers are ended by a negative one, which is not to be stored. Assume that 	there are no more than 100 numbers.





	assume that 100 numbers have already been stored in a. Copy each one from the array a into the array b.





	assume that 100 numbers have already been stored in a. Find the biggest value in a.





	assume that 100 numbers have already been stored in a. Find the position of the 	largest value.





	assume that 100 numbers have already been stored in a. Search for the value 9876. 	Either display its position in the array 	or display a "not found" message.


	read 100 numbers into a. Then display the sequence in reverse order.





	assume that 100 numbers have already been stored in a. Input two numbers (position 	numbers in the range 1 to 100). 	Then display the values stored in the elements 	between the two positions. For example an input of 3 7 should cause the display of 	the contents of


             a[3], a[4], a[5], a[6], a[7].





	input 2 values. Then look at the value stored in each element of the array (100 of 


	them). Display each value that falls 	between the 2 input values.

















========================


�



An Example of Top-Down Design with C++





Problem - an algorithm to print a box, given its height and width.  For example:





   ******


   *    *


   *    *          height of 5, width of 6


   *    *


   ******


We will do this in a top-down design way, and assume the existence of a function


			out_chars(ch, count)


which prints the character  ch  'count' times.  Thus  out_chars('*',6) will print:





   ******





There are many answers.  This one breaks the problem down into a top line, a bottom line, and a'middle bit', of the form:





   *    *


   *    *


   *    *


which is always  'height-2' lines, with a gap between the * of 'width-2' spaces.   We begin at   relatively high (abstract) level, e.g:


main


   input height, width


   line_of_stars(width)


   middle_part(width, height)


   line_of_stars(width)


endmain





Note that we will use parameters:  line_of_stars needs to be given the width to do its job, and middle_part needs the height (to do the correct number of lines) and the width (to work out the gap).   We continue:


function line_of_stars(integer count)


   out_chars('*', count)


   display new line


endfunction





Note that we could have picked ANY name for the width - the name is local to the function.  We chose 'count', but we could even have chosen 'width'.   Finally:


function middle_part(integer across, integer height)


   for line= 1 to height-2


      display '*'


      out_chars(' ', across-2)             // do the 'gap'


      display '*'


      display end line


   endfor


end function


We can now code it in C++, together with out_chars().  Note that functions have been  commented clearly.


// box print  -  Mike Parr


#include <iostream.h>


void out_chars(char ch, int count);


void middle_part(int across, int height);


void line_of_stars(int count);


int main ()


{


   int height, width;


   cout << "Type height and width for box:";


   cin >> height >> width;


   line_of_stars(width);


   middle_part(width, height);


   line_of_stars(width);


   return 0;


}


///////////////////////////////////////////////////////////


//function line_of_stars   - display count stars


void line_of_stars(int count)


{


   out_chars('*', count);


   cout << endl;


}





///////////////////////////////////////////////////////////


//function middle part - displays 'height' lines, each with


//  a gap of 'across-2' spaces





void middle_part(int across, int height)


{


   int line;                    //  used in for


   for (line = 1; line<= height-2; line++)


   {


      cout << "*";


      out_chars(' ' , across-2);


      cout << "*" << endl;


   }


}





///////////////////////////////////////////////////////////


//function out_chars  - display 'ch'   'count' times





void out_chars(char ch, int count)


{


   for (int n = 1; n <= count; n++)


   {


      cout << ch;


   }


}


////////////////// end  ////////////////////////////////////





�
PSEUDOCODE TO C++





PSEUDOCODE�
C++�
�



Assignment





set x to 123


x = 123�
x = 123;


�
�






I/O





input count


read count





output count


display count


display "some message"


�
cin >> count;








cout << count;


cout << "some message";


�
�






selection





if a=b then


   set x to 3


else 


   set c to 8


endif


�
if (a==b)


{


   x=3;


}


else


{


   c=8;


}


�
�






loops





while n<=10 do


   display n


   set n to n+1


endwhile





for n = 1 to count do


   display n


endfor


�
while (n<=10)


{


   cout << n;


   n=n+1;


}


for (n=1; n <= count; n++)


{


   cout << n;


}


�
�












functions

















to call,just use the name, e.g:


print menu





to define the function:


function print menu


   display "MENU:"


   display "commands are:


   ..etc


end function


�
In C++, put a prototype before the main,e.g


void print_menu(void);





a call is:





print_menu();





a definition is:


void print_menu(void)


{


   cout << "MENU:";


   ...etc


}


�
�






Arrays





Use a similar form in pseudo code to C++


set a[n] to 0, or


a[n]=0


�
a[n]=0;


�
�












�PAGE�49�











