Object Oriented Programming Exercises.

1) Enter, compile and run the following program

#include <iostream>
using namespace std;

void main()

{

cout << "C++ is easy!" << endl;

}

2) Using a for loop print "Hello" ten times on the display. Use endl to print on separate lines.

3) Input an integer from the keyboard using the cin input stream and print "Hello" that many times.

4) Write a program that inputs an exam mark and prints PASS if the mark is 40 or more otherwise print FAIL

5) Write a program that inputs a degree mark and using a series of if-else statements prints the classification as follows; <35 fail, 35-39 pass, 40-49 Third class, 50 - 59 Lower second class, 60 - 69 Upper second class, 70 and above First class.

6) Write a program to print the following pattern on the display, where the user enters the number of lines to be printed. Hint: use two for loops, one nested inside the other.
*
**

etc.

Modify the program to make the part that draws the *'s into a function which is called by the main program. The function call should pass the number of lines to be drawn e..g. drawstars(n); where n is an integer variable that has been given a suitable value.

7) Create a main function with an integer variable x, initialised to zero, and pass the variable to three functions func1, func2 and func3 in turn printing the value after returning from the function call:-

void main()

{

int x = 0;

cout "x starts as " << x << endl;

func1(x);

cout "x is now " << x << endl;

func2(x);

cout "x is now " << x << endl;

func3(x);

cout "x is now " << x << endl;

}

The functions should each receive the variable in a different way :-

void func1(int a)

void func2(int& a)

void func3(const int& a)
What are these three passing methods called and what restrictions/limitations do they impose on the variable used in the function and how could they affect the original variable being passed?

The functions should each print out the value of the variable that it has been passed and then attempt to modify the variable e,g func1 sets the variable to 1, func2 sets the variable to 2, func3 sets the variable to 3.

void func1(int a)

{

cout "In func1 the variable is " << a << endl;

a = 1;

cout "changed variable in func1 to " << a << endl;

}

Note any compilation errors or warnings. Can you explain why the errors occur?

func3 will not allow the variable to be modified, so remove the offending line.

In what circumstances would you use the three variable passing methods?

8) Create a class called motor which has two private variables called status and speed which represent the state of a motor. The status is 'S' when the motor is stopped and 'R' when the motor is running, speed represents the rpm(revolutions per minute) of the motor. The status value is set to 'S' only if the speed is 0, otherwise it is set to 'R'. The class currently has one public method called display which simply displays the values of the two private variables.

class Cmotor
{

 public:

void display()

{

cout << "Status = " << status << endl;

cout << "Speed = " << speed << endl;

}

 private:

char status;

int speed;

}; // Don't forget the semicolon at the end of the class!!!

Now write a main function which creates an instance of the motor called mike and invoked the display method on the object mike:-

void main()

{

Cmotor mike;
// create a motor instance

mike.display();
// invoke display method

// rest of main program to go here

}

Notice the starnge values for the status and speed. Why is this?

It is because the have not been initalised to sensible values.

So add a public method into the class Cmotor called initialise that sets the variables to zero.

void initalise()

{

speed = 0;

status = 'S';

}

Modify the main function to test the initialise method.

void main()

{

Cmotor mike;
// create a motor instance

mike.display();
// invoke display method

mike.initialise();

mike.display();

// rest of main program to go here

}

Add the following methods to the motor class and test each method as you add them by amending the main function.

set_speed(int s) - set the speed variable to s and

- alter status as appropriate.

int get_speed() - return speed value

char get_status() - return status value.

Check that the program compiles and build with no errors or warning and that it operates correctly. Try stepping through the program using the debug features of Visual C++. The commands to use are Step_into, Step_over and Step_out.

9) Up to this point your programs have been contained within one source file. It is however common practice to separate out the main function into its own file and also to partition the class into two files, one will hold the class definition and the other the class methods. These correspond to the class interface and class implementation mentioned in lectures. The class definition file will be denoted by the filename ending with the extension ".h", the class methods file will be denoted by the extension ".cpp". The actual name of the files is irrelevant but a sensible choice would be the same as the class or something very similar.

Create a new project and reformulate exercise 8 into three files:- main.cpp, motor.cpp and motor.h

The motor.h file will contain the class definition :-

class Cmotor
{

 public: // Method declarations

void display();

void set_speed(int s); //set the speed variable to s and

//alter status as appropriate.

int get_speed();

//return speed value

char get_status();
//return status value.

 private:

char status;

int speed;

};

The method definitions are placed in a separate file "motor.cpp".

E.g. For the display method:-

void Cmotor::display()

{

cout << "Status = " << status << endl;

cout << "Speed = " << speed << endl;

}

Notice the addition of Cmotor:: before the method name. This is needed so that the compiler can associate this function with the motor class. Without this it would just be like any other function such as the main() function.

The motor.cpp file must #include "motor.h" at the beginning of the file. This is so the compiler will include the class definition before the code for the methods is compiled.

Similarly the main.cpp file must #include "motor.h".

Check that the program compiles and builds with no errors or warnings and that it operates correctly. Try stepping through the program using the debug features of Visual C++. The commands to use are Step_into, Step_over and Step_out.

10) C++ has a library of standard classes. One useful class is the string class which avoids the use of arrays of char. To use the string class place #include <string> with the other #include commands in your program. Create a program, declare some strings and assign values to them. Print them using cout, concatenate(join) two strings using the operator +, investigate and experiment with other string methods (Look up in books or use on-line help - the latter can however be confusing to a learner of the language).
[Advanced C++ feature - As well as the standard classes such as ostream (cout is an instance of the ostream class) there are classes that have been made into templates, these form the Standard Template Library which has now been incorporated into the C++ ANSI Standard . These template classes provide many container classes and algorithms that can make developing large programs much quicker and easier. Examples of containers are vector, list, queue and algorithms like find and sort. However they take time to learn, and to use effectively because there are many classes and numerous methods within each class.. Another drawback in using template classes, particularly for learners of C++, are the indecipherable error messages that are generated if you use the template classes incorrectly.]

11) This exercise is a step by step development of a class to represent a light bulb.

a) Create a class called CBulb that has a single private integer variable called state that enables the state of the bulb to be represented (where 0 = off, 1 = on). Add a public print method that prints the value of the private variable state. Add another public method called setstate that allows the variable state to be assigned a value.

b) Write a main function that creates an instance of the CBulb class i.e. a CBulb object and test the methods print and setstate.
What would be the result of calling the print method before calling the setstate method?

c) Modify and test the program by adding a constructor (with zero arguments) that initialises the state variable to zero. A constructor is a member function with the same name as the class name and which has no return type, not even void. (Note: All classes should have a constructor to initialise the state of the object being created.)

d) The setstate method works okay and allows the state to be set to 0 and 1 but the user of the class could inadvertently attempt to set the state variable to an illegal value e.g. -99 or 4321 . We will improve the class by adding two methods called on and off that set the state variable to 1 and 0 respectively. Test the program and when it is working remove the setstate method, which is now no longer needed.
(As class designers we should design classes that are intuitive to users and restrict misuse of the class and its private variables)

e) Modify the print method to print "on" and "off" depending on the value of the state variable. Modify the main function to test your program.

f) Add a method getstate that returns the value of the variable state. Modify the main function to test your method.

g) Add another private integer variable, watts. Create an additional constructor which takes a single integer argument that is used to initialise the variable watts. Add a method getwatts that returns the wattage of the bulb.
h) Add another method getpower which returns the power being consumed by the bulb. This should be zero if the bulb is off and the value of watts if the bulb is on. Modify the main function to test your program.

i) Add another private string member variable to represent the colour of the bulb. Provide two additional methods to allow a user of the CBulb class to set the colour variable and to get the value of the variable respectively. Remember to modify the constructor to set the initial value of the colour.
j) Currently the class has two constructor functions, one taking no arguments (i.e. the default constructor) and the other taking a single integer argument. Can you create a single constructor function that provides the features of both.

12) Create a class CSwitch to represent a simple on/off switch. The class should have a single variable to represent the state of the switch and the following methods :-

A constructor that initialises the switch to the off state.

void close() - to turn the switch on

void open() - to turn the switch off

void print() - to print the state of the switch

??? getstate() - to return the state of the switch. ???(is the data type of the variable to be returned)
Write a main function to test the CSwitch class.

13) Create a class CLamp that has instances of a CSwitch and a CBulb within it as private member variables. Provide the following methods :-

CLamp(int x) - a constructor that will construct the lamp with a CBulb of x watts and a CSwitch initialised to the open state.

void on() - turn switch and bulb on by using methods from the CSwitch and CBulb classes
void off() - turn switch and bulb off by using methods from the CSwitch and CBulb classes
void print - to print state of lamp by using methods from the CSwitch and CBulb classes
int getpower() - return power currently used by the lamp.

Write a main function to test the CLamp class.

14) Create a class CPullSwitch which incorporates a CSwitch. This class should have a constructor and at least one method pull() that toggles the switch between on and off.

Use the PullSwitch and CBulb classes to create a new class CPullLamp

Write a main function to test the CPullLamp class.

15) Create a new class CStairsLamp which represents a bulb controlled by two switches, S1 and S2. Note The initial condition is S1 and S2 up and the bulb off.. Create appropriate methods for the new class for the effective control of the bulb via the switches. You may use the previously developed classes or an alternative approach.

	S1
	S2
	Bulb

	Up
	Up
	OFF

	Up
	Down
	ON

	Down
	Up
	ON

	Down
	Down
	OFF

Note: Before completing the remaining exercises read the notes "Design Issues" at the end of these exercises and the information below on using pointers and dynamic creation of objects using new.

General notes on pointers and using new to create objects:

A pointer is created just like other variables. The general format is :-

Type_of_pointer *name_of_pointer;
Examples

int *ip;

//ip can point at integer variables

CMotor *mptr;
//mptr can point at CMotor objects

CBulb *bp;

// bp is a pointer to Bulb objects

Variables & objects can be created statically or dynamically Up to now we have always created these statically:-

float salary;
// create a single float variable

int x[100];
// allocate memory space for 100 integers

CMotor billy;
//This creates the object called billy
When the compiler compiles the program it allocates memory space to hold the variable or object and whenever it is referenced in the remainder of the program the compiler is able to provide the correct memory location that it had allocated to the object. (this is actually called static binding).

There are however situations where we may want to create variables & objects when the program is executing. For example we need an array to be used in our program but we don't know how many elements the array should have. This is a situation where dynamic variable & object creation is need.
We create objects(and ordinary data types) dynamically using the C++ command new :-

new float;

// allocate memory for one float

new int[size];

// allocate memory for size ints,

// where size is variable

new ClassName(args);
//allocate memory for a ClassName

// object and construct it.
The last example constructs a ClassName object (in the heap memory). The object is created using the constructor function. If the constructor requires any arguments they are placed in parentheses after the ClassName. The new command returns with a pointer to the newly created object and must therefore be assigned to a suitable variable. The pointer must have been previously declared e.g.

ClassName *objptr; // create a pointer to ClassName objects

remember that at this pointer objptr has not been initialised and will have a random value at this time.

Therefore the way new command is often used is :-

objptr = new ClassName(args);

We can, if we want, create a pointer and the object it points to at the same time. the general format is:-

ClassName *pointer_to_object = new ClassName(args);
this constructs a ClassName object (in the heap memory), if the constructor requires any arguments they are placed in parentheses after the ClassName. E.g. To create a CBulb object and a pointer to it -

CBulb *bptr = new CBulb(100);

The above creates a bulb object passing 100 as an argument to the constructor and at the same time a CBulb pointer is created and initialised to point at the newly created object.

Having created an object and a pointer which is now pointing at the object, we can invoke the class methods on the object via the pointer. The notation is in general of the format :-

pointer_to_object.>method(args);

Note that '->' replaced the '.' used previously to invoke methods on an object by name

Now the class methods are invoked using the pointer name and the indirection operator '->'

For example to use the on method of the CBulb class:

bptr->on();
// invoke the on() method where bptr

// must be pointing at the bulb object

One thing that must also be considered is the freeing up the heap memory when the object is no longer required. This is easily achieved using the delete C++ keyword and specifying the pointer name that references the object.

Example: to destroy the CBulb object and release the memory it occupied.

delete bptr;

Failure to do this may lead to “memory leaks”.

16) Instead of embedding an instance of an object directly in another object we can achieve the same effect using pointers. Now you will create a different lamp class that will use a pointer to a Cbulb instead of an instance of a Cbulb.

==

Design Decisions

When we create the new lamp class we have to make a design decision -

Should the lamp class be responsible for creating & destroying the bulb that is uses? If not, where should the bulb be created and how does the lamp class access the bulb?
Answer - I say the lamp class should not create the bulb but simply use it. The bulb will be created outside of the lamp class and passed to the lamp class via a pointer when the lamp is created.
Do you agree? Can you justify your decision?
==
Procedure

a) Based on the lamp class created previously, create a new class CLampPtr that uses a pointer to a CBulb instead of embedding a CBulb object directly in the class. The switch object can remain as it was in the previous lamp class.:-

class CLampPtr {

private:

CBulb *bptr;
// a pointer to a bulb

CSwitch sw;
// an instance of a switch

etc.

Before a CLampPtr object can be created a CBulb object and its associated pointer should be created. The CLampPtr constructor should be written to receive a pointer to a CBulb as shown below.
It is in the main function that the bulb is created along with a pointer to the bulb then the pointer is passed to the lamp constructor.:-
// create a 100 bulb and its associated pointer osram.

CBulb *osram = new CBulb(100);
//Create the lamp bedside passing the pointer to the CLamp constructor

CLampPtr bedside(osram);
When we no longer require the CBulb object we must release the memory using:-

free osram ; // this releases the memory that the object was occupying
Note this doesn't do anything with regard to the pointer itself. The pointer still exists.
b) Modify any methods in the lamp class that need to be updated to use the bulb pointer instead of the previous bulb instance.

c) Now add a method that allows the bulb in the lamp to be swapped. Modify the main() function by creating another bulb and test the new swapbulb method.
Remember we also need to consider what happens when we pass objects to as arguments to functions. The default method of passing arguments to functions is by value i.e. a copy is made. Normally this is not a problem as the compiler simply duplicates the object. So if the object had attributes that were two integers then both integers are duplicated and their values copied to the duplicate object. However if any of the member variables are pointers then only the pointer is duplicated, NOT what the pointer is pointing at! Therefore both pointers would be referencing the same object. The object, that the pointer is pointing at, is NOT duplicated (this is termed a shallow copy). In some cases this is acceptable but in many cases we require a complete duplicate copy and so we must provide a copy constructor which makes a complete copy (This is termed a deep copy).

Note : A copy constructor is always of the form:-

ClassName(const ClassName & x)

{

copy all member variables from x to this object

}

d) Create and test a copy constructor for the ClampPtr class that will provide true copies of lamps
17) Create a chandelier class with one switch and several bulbs. Provide suitable constructor(s) and methods. Write a main function to test your chandelier class.
Design Issues (See UML notes)

The diagram below represents a simple lamp class similar to, but not the same as, the one developed in Exercise 13.
[image: image1.emf]Bulb

state : int

On()

Off()

Lamp

state : int

On()

Off()

1

1

Switch

state : int

On()

Off()

1

1

1

1

1

1

This shows that all classes have a single data item or attribute called ‘state’ which is private and which is represented by an ‘int’. Likewise all classes have two member functions called On() and Off() which are public (we’ll ignore constructors and destructors and the other functions you wrote for your classes in C++ until later)

The above diagram also shows that there is a relationship between the Lamp and the Bulb, and between the Lamp and the Switch indicated by the line (known as an association) connecting them. The ‘1’ highlighted at each end is known as the multiplicity and indicates how many instances of a Lamp exists for each instance of a Bulb and Switch. In this case it shows that each Lamp has exactly one bulb and one switch. That is for each instance of a lamp, there will exist one switch and one bulb that belong to it and that each bulb and switch belongs to exactly one Lamp (they cannot be shared between two lamps for example). The arrow at the end of the association indicates that messages may be sent from the lamp to the bulb (but not the other way around). If bidirectional message passing is required (from lamp to bulb and from bulb to lamp) then an association with NO arrows on it is used. This is in fact the default when an association is first created.

Note that there is a filled diamond on the Lamp end of the relationship. This indicates containment by value, i.e. that the Lamp ‘owns’ the switch and bulb in other words the bulb and switch are ‘part-of’ the lamp.

This containment implies that when a lamp is created, a bulb and a switch must also be created and likewise when the lamp is destroyed the bulb and switch and also destroyed. In other words their lives are interconnected and thus a bulb cannot exist without the lamp and vice-versa. We implemented this containment in C++ using aggregation by placing an instance of a bulb and a switch inside a lamp e.g.

class Lamp
{

private: Bulb b1 ;

// C++ containment of a bulb by value

 Switch s1 ;

// C++ containment of a switch by value

…

};

[image: image2.emf]Bulb

state : int

On()

Off()

Lamp

state : int

On()

Off()

0..1

1

Switch

state : int

On()

Off()

0..1

1

0..1

1

1

0..1

If we had drawn the diagram, like the one below, with open diamonds representing containment by reference on the end of the relationship, then it would imply that the lives of the Lamp, Bulb and Switch are not interconnected and could lead separate lives and existences, i.e. we could create an instance of a bulb and a switch quite separately without there having to be a Lamp and vice-versa. The lamp could then be given its bulb and switch separately at some point in the future, in fact that could even be replaced or swapped out

Note that when we changed the containment from one of ‘value’ (filled diamond) to one of ‘reference’ (open diamond) we had to change the multiplicity from ‘1’ to ‘zero-or-one’ to indicate that at any point in time a lamp object could actually exist with either no switch/bulb or one switch/bulb since their lives are now independent. In C++ containment by reference is implemented using pointers as shown below.

class Lamp
{

private: Bulb
*b1 ;

// C++ containment by reference using a pointer

 Switch *s1 ;

// C++ containment by reference using a pointer

…

};

Obviously introducing an instance of the lamp will not automatically introduce an instance of the bulb or switch (only a pointer to them). We have two solutions to addressing this. Firstly we could write our lamp constructor to automatically create a bulb and switch object using operator ‘new’ or alternatively we could include a ‘swapbulb()’ or ‘attachbulb()’ function to allow us to swap or attach an existing bulb (and switch) at some point after the creation of the lamp.

The choice of containment type is up to us but it would appear that containment by reference (i.e. using pointers) whilst adding somewhat to the complexity of the code, gives us a degree of flexibility not afforded when using containment by value, that is, it gives us the ability to attach and detach the bulb and switch to/from the lamp and is more realistic in the sense that real bulbs ‘blow’ and will need replacing.

Class Associations: Containment vs. Association

Yet another alternative representation of the above classes is shown below, where containment (either by reference or value) is NOT represented. In essence the classes are linked by associations (i.e. no diamonds on the end). This means that the lamp does not own the bulb or switch and thus they can have quite separate lives but it does rely on their existence and co-operation in order to work. It’s a philosophical debate as too which approach is better, but the question you should ask is which one do you feel comfortable with?.

If in your opinion you see one object as containing or being composed of another then show some form of containment on the class diagram. If you view the classes as just co-operating then just show an association. The implementation of an association is the same as it would be for containment by reference, i.e. the lamp would contain pointers to the bulb and switch.

[image: image3.emf]Bulb

state : int

On()

Off()

Switch

state : int

On()

Off()

Lamp

state : int

On()

Off()

0..1

1

0..1

1

0..1

1

0..1

1

Alan Goude
9
Jan 2005

