Programming Exercises on Inheritance

1) Create a base class called 'CPU', and using suitable member variables(create some private and some protected - why the difference?), record information that is common to CPU's such as:

a) Clock speed in MHz

b) Cache size in Kbytes

c) Pin Out Type e.g. 1 = Socket 7, 2 = Slot A etc.

d) Manufacturer Name both as a string (e.g. "Intel", "AMD" etc). Use the string class from the standard template library (i.e. '#include <string>' and 'using namespace std;'

e) Model Name, both as a string, e.g. "PIII", "PIV", "Athlon" etc.

2) Create a Constructor for your CPU class that is able to accept, as arguments, all information required to initialise the member variables declared above.

3) Create some public member functions for your CPU class such as:-

1. void Identify(void) This should print out all the values assigned to your member variables.

2. int GetClockSpeed() This should return the clock speed in MHz

3. int GetCacheSize() This should return the cache size in Kbytes

4. ? etc for all other member variables.

4) Now create two new intermediate classes called IntelCPU and AmdCPU by inheriting from the base class CPU. Write suitable constructors for these new classes, which then call their base class constructor.
Note that the constructor for these new classes will also have to be written to accept whatever arguments that may be required to initialise their base class (See CPU constructor), however, because these new classes are more specialised versions of the CPU class their constructors will require fewer arguments. For example, the IntelCPU constructor should know that its Manufacturers name is "Intel" and thus its constructors should require fewer arguments than the base class constructor, ditto the AmdCPU.

5) Finish off by creating a complete classification/hierarchy for a representative sample of CPUs. Eventually you may end up with a fully specified class such as IntelPIIISlotA which means an Intel Pentium III with a Slot A interface. The clock speed of the CPU is to be defined at run time via an argument to the constructor when the object is created. E.g. IntelPIIISlotA mycpu(800); for an 800 Mhz model

As you create these new derived classes, remember to write new constructors which call their immediate base or parent class's constructor. If you have done this correctly, you will find that the constructors lower down the classification/hierarchy tree require progressively fewer arguments that those above them (i.e. their parent or base class) until ultimately, the constructors for the classes at the lowest points in your hierarchy may require no (or perhaps just a few, depending upon how far you want to take it) arguments.

6) Now think about ways in which a CPU with the characteristics of an Intel Pentium III running at 800 MHz in a Slot A pin out could actually be created as an object or class instance in your program. Obviously we could say something like this which creates an instance of exactly that type of class

main()
{

IntelPIIISlotA mycpu(800);

mycpu.Identify() ;

}

But think about how we could create CPUs with characteristics identical to the IntelPIIISlotA by creating instance of classes higher up the hierarchy than this e.g. IntelPIII, or IntelCPU or even just CPU, now compare each of these approaches and think about what inheritance has achieved for as a tool for specifying correctness of construction.

7) Verify that the functions that you have written in your base class CPU have all been inherited and thus can be applied to instances of all classes further down the hierarchy i.e. verify that functions/methods defined in the base class work regardless of whichever kind of CPU we apply them to.

8) If you were adding functions/methods to simulate the operation of a CPU such as Reset(), where would you position the code for this function in your classification hierarchy? Remember, classification is a process that attempts to isolate commonality and move it as far up the classification hierarchy a possible.

9) If you were adding functions/methods to simulate the actual instructions that each kind of CPU could execute how would you represent these functions in your class hierarchy, given that Intel and AMD have some instructions in common and some that are unique to their particular manufacturer (e.g. 3D Now! Instructions are unique to Amd while MMX instructions are unique to Intel)? Generate some dummy instructions to simulate this concept.

10) Suppose AMD Introduced a new processor the AthlonXP which had a new characteristic never seen before in any CPU, let's say a level 3 cache with a fixed size of 64KBytes. In which class in your hierarchy would you position this new member variable to represent the new cache, given that all classes beneath that class will inherit this new feature? How would this change affect your constructor for that class?. How, if at all, would it affect the constructors of the classes lower down the hierarchies?.

11) Implement point 10) above by creating a new class AthlonXP with the new cache, and then, using inheritance, create additional classifications for a family of AthlonXP CPUs such as AthlonXP1500, AthlonXP1600, AthlonXP1700 etc.

Suppose then that you introduced an instance of one these classes into your program and then invoked the Identify() function (inherited from the base class CPU) for it. Why do you not see the information about the new Cache Size in the display? What changes would you make to ensure that when a kind of AthlonXP CPU was being asked to identify itself, the new cache size information appeared in the display but does not appear for any other kind of CPU? (Hint: think about the possibility of overriding an inherited base class function within a derived class while still re-using as much as possible of it).

Alan Goude
1
Sept 2004

