16-7210

Microprocessor Engineering Assignment

Objective:
To develop a microcontroller based sound level meter and logger
Hand in deadline : See web page.
Demonstration : To be announced

Note: All work should be done on an individual basis. i.e. all the work presented should be your own.

Basic Specification

The sound level meter should be able to measure up to about 90dB - 100 dB(decibel). The sound level should measured and displayed at regular intervals. The resolution should ideally be to 1dB if possible.

The sound is detected by a microphone and amplified to produce a voltage in the range 0 to +5 volts. Where +5V is equivalent to 90dB. This sound signal can be simulated with a simple voltage signal covering the range 0 to +5 volts.

In order to develop a working prototype and to evaluate the possibilities of the sound level meter logger the following are available:-

The Infineon M167 development board containing various I/O peripherals such as LCD, LED’s , switches, keypad etc.
The u-Vision software development system and Keil C166 compiler

The following is a brief list of some of the Infineon & I/O Application board features:

· Infineon C167CS 16-bit microcontroller

· Kbytes of high-speed on-chip RAM

· 256KBytes of external program memory (Flash ROM)

· 256KBytes of external data memory (RAM).

· Nine 16-bit counter/timers T0 – T8 (see C167CS user manual for details)

· Several digital I/O ports connected to 10 LED’s, 16 key Keypad and 16character x 2 line LCD

· 16 channel 10-bit ADC. Two potentiometers generating voltages in the range 0 to +5 volts are connected to analogue channels 0 and 1

· A 4KByte I2C EEPROM with a 7-bit slave address of 1010000 binary. A library of I2C routines is available to allow easy access to the EEPROM.

· An RS-232 serial port (This could be used to output the logged data.)

Notes/Guidelines

· Library functions written in 'C' for the LCD, Keypad and EEPROM are available from the lecturers web site
· It is expected that you will use a hardware timer and interrupts in your implementation.

· Sound level is measured on a logarithmic and relative scale.

· Level in dB = 20 log​10 (V1/V2) where v1 and v2 are the two levels.

· If V1 = 5 and V2 = 2.5 then difference in level is 20 log​10 (5/2.5)dB = 6.0206dB. Thus if 5Volts represents 90dB then 2.5volts is approx. 6 decibels less i.e. 84dB.

· -6dB represents approx. a halving of voltage level. Therefore 1.25 volts is approx. 78dB.

· The current and the peak sound levels should be displayed as numeric values on the top line of the LCD. A facility to reset the peak level should also be provided.

· Additionally the sound level could be also displayed in an analogue form as a moving bar on the LCD
· Provide range switching to allow a wider range of sound levels.

Add additional features to enhance your sound level meter. Such as:

The ability to log data (store values in EEPROM) at a particular rate (say once a second) or on demand (via a switch/keypad or command from the serial input)

Simple filtering/averaging of displayed numeric value.

Use the serial port to issue commands and to display logged data.
Use the keypad to issue commands to the logger.

Provide a facility so that the moving analogue bar responds as fast as possible to increases in sound level but only drops by 1dB steps every 50mS when the sound level is decreasing.

Using the LCD display.

The 2 line 16 character/line LCD should be used to display the sound level. This should be displayed as a numeric value and possibly in analogue form as a moving bar. The basic LCD provides only 16 characters in a row. So initially the basic resolution would be 90/16 which is a bout 6dB per character space. But by programming the LCD to have user defined characters such as:-

Character code
Character Symbol

0 |

1 | |

2 | | |

the character code is the ASCII code that is used to actually display the character symbol on the LCD, for example putchar(2); would display | | | on the LCD in one character space (assuming the LCD has been initialised and lcd_output has previously been set to 1). So if 16 character code 2's are written to the LCD the display would have 48 bars. So we could a scale of 2dB per bar to cover the range 0 to 96dB
The moving bar would be made up of a number of the above character codes. To output 20 bars would require output of six character code 2 and one character code 1.

|

would represent 40dB if each bar represents 2dB.
Assessment

1. Produce a brief report outlining the features and operation of your solution(max 6 sides of A4) and append a fully documented program listing.(Exclude any software routines provided by the lecturer)

2. The report should discuss the accuracy and resolution of your system and any limitations imposed by the hardware such as the 10bit ADC for example.
3. Demonstrate the working state of your program. (This is essential before any marks are awarded) at which time the report must be presented. During the demonstration you may be asked to explain the operation of your program code.

A possible work plan

	Stage week no. ->
	1
	2
	3
	4
	5
	6

	Read ADC and display value on port and/or serial port
	
	
	
	
	
	

	Use timer interrupt to interrupt at regular intervals take ADC reading and display on LCD
	
	
	
	
	
	

	Read ADC and detect and display peak value.
	
	
	
	
	
	

	Convert readings to dB
	
	
	
	
	
	

	Display value as a moving bar
	
	
	
	
	
	

	Add user input facilities. E.g. reset peak.
	
	
	
	
	
	

	Modify moving bar to produce decay on lowering sound levels
	
	
	
	
	
	

	Add logging facility, samples in EEPROM, start & stop sampling. Retrieve and display stored samples
	
	
	
	
	
	

Assessment Criteria

	Feature
	Fail (0-39%)

F/E
	(40%-49%)

D
	 (50%-59%)

C
	(60%-69%)

B
	(70+%)

A
	Indicative Weighting

	Program design and structure
	Unable to use standard C language appropriately.
	Satisfactory use of C language in embedded systems
	Competent use of C language in embedded systems.
	Competent use of C language in embedded systems and use of compiler features
	Competent use of C language in embedded systems and use of compiler features
	10%

	Assignment Report and
Program documentation
	Little or no useful user documentation and poor program format/layout.
	Adequate documentation and format/layout of program.
	Appropriate documentation and format/layout of program.
	Detailed documentation and format/layout of program.
	Professional documentation and format/layout of program.
	20%

	Input & output programming methodologies.
	Little or no competence at using simple polling techniques for I/O interfacing
	Use of appropriate techniques for I/O interfacing
	Use of polling techniques with some use of interrupts for I/O interfacing
	Competent use of polling and interrupts for I/O interfacing
	Innovative use of polling and interrupt driven programming techniques.
	10%

	Working state and innovative features.
	Little or no evidence of a working system.
	Program performs minimum system requirements.
	Program provides some additional requirements.
	Program performs all system requirements.
	Program performs all system requirements and system extended in an appropriate and innovative direction.
	60%

Comments:

2
16-7210 Ass2 2008.doc

