Run Time Type Identification (RTTI)

First in order to use it you must enable it within the Visual C++ environment.

This means going to the Menu Project->Settings, then Click on C/C++ tab. In the 'category box' seletc 'C++ Language' and then check then

put a tick mark in the 'enable run time type identification (RTTI)' check box.

What can you do with it. Basically it allows you to determine the type of object you are pointing to (or referencing). For example, consider a simple

class hierarchy below

class
CPU {

....

} ;

class PentiumIII : public CPU {

...

} ;

class Athlon : public CPU {

...

} ;

we could build a simple array of pentium and athlon processors like this, making use of base class pointers for their generic abaility to point to an instance of any kind of derived class

CPU *mycpus [] = {new PentiumIII, new Athlon } ;

Now suppose we had another pointer like this

CPU
*cpu = mycpus[rand() % 2] ;
// generate a random number between 0 and 1 and use as the index to mycpus

there is no way for the compiler or the programmer to now whether 'cpu' points to an athlon or a pentiumIII. Why would you need to now

well consider this function for motherboard class

class motherboard

{

virtual CPU *swapcpu(CPU *) {}

// swaps existing cpu for a new one

} ;

class Socket7 : public motherboard {

// socket 7 motherboards only take PentiumII cpus

{

virtual CPU *swapcpu(CPU *) {}

// swaps cpu

} ;

the problem above is that for virtual functions to work, they have to be declared in exactly the same way in the base class and the derived class. We would like to write the above class and its function as this

class Socket7 : public motherboard {

// socket 7 motherboards only take PentiumII cpus

{

virtual Pentium *swapcpu(PentiumIII *) {}

// swaps cpu for a pentium III. DOESN'T work

} ;

but cannot, since the base and derived class functions 'swapcpu()' have difference 'signatures' and the compiler won't let us or if it does, it doesn't work in the way expected

now lets suppose we have a mother board pointer 'motherboard *mb1' pointing to some kind of motherboard (exact type not known) and we want to swap it's cpu for the one pointed to by 'cpu' above. We want to know whether the cpu (exact type not known) is compatible with the motherboard (exact type not known. How do we do this, use a dynamic-cast like this

if(dynamic_cast<PentiumIII *>(cpu) != NULL)
// if the cpu we are pointing to is really a pentium III (or some kind of derived pentium III), the return a valid pointer

if(dynamic_cast<Socket7 *>(mb1) != NULL)
// is the motherboard a socket 7 motherboard

CPU *oldcpu = mb1->swapcpu(cpu) ;

// swap is OK, since we have verified that cpu is pointing to a cpu compatible with our motherboard

1
2

