[image: image21.wmf]

Modeling Object Collaborations and Interactions

Given that we already have a method of capturing and modeling requirements and object/class relationships via the Use-case and Class Diagrams, what is needed now, to more of less complete the model of our system is a method of modeling the collaborations that take place between these objects.

We already know from ideas of OOD/OOP and from CRC cards discussed earlier that objects collaborate with each other to realize a use-case. That is, objects in a system work together, via a process of message sending in order to achieve a high level responsibility identified within a use-case.

Thus relationships or associations between objects in a system (captured on our class diagram) were simply an expression of this need for one or more objects to send messages to another, i.e. where there was a relationship drawn between two classes on a class diagram, then a message could be sent from one instance of that class to other, but such a relationship is essentially a static requirement, frozen during analysis, it gives no indication as to what messages are sent, or in what order when an actor interacts with the system.

What is really needed is a diagram which will capture this dynamic message-passing concept; one that will capture the propagation of messages as they ripple through the system from object to object in their attempt to realize a use-case. Once these messages have been documented, a designer or programmer can then step in and realize these messages in the form of methods or member functions within the class. Thus message passing, captured within the analysis model ultimately gets translated into objects invoking member functions within other objects, in the design model.

So how do we capture this dynamic object interaction? With an interaction diagram of course.

Interactions Diagrams

UML has two types of interaction diagrams :

· Sequence diagrams

· Collaboration diagrams

Both essentially attempt to capture the same thing: Objects interacting and sending messages to each, but they do it in slightly different ways. The fact that two such diagram types exists to capture more or less the same requirements is mainly historical, before UML was finalized, there were a number of competing methodologies around all vying to become the ‘industry standard’ object modeling tool.

When sense prevailed and the competing standards rationalized and became UML, there was inevitably some overlap, as all of the methodologies where trying to do the same thing, but using different diagrams to do it.

Furthermore, some developers had become accustomed to particular way of doing things and were reluctant to give that up unless there were obvious benefits which all too often there weren’t, so both and new diagram were incorporated into the UML.

However, it is fair to say that many analysts prefer sequence diagram to collaboration diagrams, but whichever one you choose, Rational Rose can convert it to the kind of diagram, so don’t worry unduely.

Sequence Diagrams

Let’s start off with an example. The picture below shows a typical sequence diagram.

[image: image1.png]X]

< Rational Rose - Password Model - [Sequence Diagram: Add New User Realization / Add User Interaction Diagram] =J=es
Fie Edt Vew Fomat Biowse Report Toos Addns Wndow Help E

DEH ‘BE & ROBRBREE B¢ A

System Administrstor TheUserDirectory | TheGroupameForm ThelizemameFom Thep aswardfile TheP ssswordFom : PasawardFom TheaddUserSubSystem

: x

vem Thelserbiscory | [TheGreupamerom ThelsalameF orm TheP ssmerdFile Toseimifon TheAddlsersubStem

Adminisator

CrasteNanizer)

Enterdigiphiamel)

ChedroupDiectoyBxist) | (=

i Settientsitiame)

Entetsentamec]

R

oetamecs

CheluzerosstiotExist ()

[Z=1 oislayUsentameNotuniqueEomes

GhnerateUniqueid()

[T

re——— e 80 @3 @

press F1

ki) T8 B) O 8 et gt

It is important to remember that the purpose of a sequence (or a collaboration) diagram is to model the interaction of objects as they attempt to realize a use-case; therefore a sequence diagram always commences with an Actor stimulating the system in some way, i.e. commencing a use-case.

Such diagrams should be read from top to bottom, as a sequence, thus the ‘Y’ axis represents the passage of time from top to bottom. The dotted line emerging from the bottom of each object and traveling downwards is called the object ‘lifeline’. Positions along the x-axis are reserved for actors and objects that collaborate in the use-case. These can be placed in any order to reduce clutter and increase the readability of the diagram (i.e. try to avoid lines crossing over other lines).

The first significant event to take place within this interaction diagram begins when the actor ‘System administrator’ sends a message CreateNewUser() to the object ‘TheAddUserSubSystem’.

[image: image2.png]X]

< Rational Rose - Password Model - [Sequence Diagram: Add New User Realization / Add User Interaction Diagram] =J=es
Fie Edt Vew Fomat Biowse Report Toos Addns Wndow Help E

DEH ‘BE & ROBRBREE B¢ A

System Administrstor TheUserDirectory | TheGroupameForm ThelizemameFom Thep aswardfile TheP ssswordFom : PasawardFom TheaddUserSubSystem

: x

vem Thelserbiscory | [TheGreupamerom ThelsalameF orm TheP ssmerdFile Toseimifon TheAddlsersubStem

Adminisator

CrasteNanizer)

Enterdigiphiamel)

ChedroupDiectoyBxist) | (=

i Settientsitiame)

Entetsentamec]

R

oetamecs

CheluzerosstiotExist ()

[Z=1 oislayUsentameNotuniqueEomes

GhnerateUniqueid()

[T

re——— e 80 @3 @

press F1

ki) T8 B) O 8 et gt

This object, immediately sends the message ‘GetNewUserGroupName’ to the object ‘TheGroupNameForm’ (a dialog box object that provides a visual means of data entry for the system administrator).

Then a message ‘EnterGroupName’ is issued to the ‘systems administrator’, and the software waits until the system administrator has entered whatever data is required for continuation (presumably the group name).

Flow of control in the system then returns via the object ‘TheGroupNameForm’ to the object ‘TheAddUserSubSystem’, which sends a message to itself ‘CheckGroupDirectoryExists’ etc.

Creating a Sequence Diagram

As with a class diagram, a sequence diagram belongs with a particular use-case realization, i.e. it is designed to model how a particular set of objects interact to realize a use-case. To begin with, create a sequence diagram in the logical view (see below). Note: you can always drag and drop this to a use-case later.

[image: image3.png]R ct Vew Fomat b et Query Tk AdbTns Window o _x
DS /-0 8RO BBBEB &« &
e
3 Use Case View Ap
Open Specification. =
[
s Lty
e usncaee
e Interface
s » padase
e aer | Clss g
e Case D
Rt Tt B

Collaboration Diagram

dd To Version Cantrol ||| Sectience Diagram |

CheckIn Statechart Disgram
Checkout Activity Diagram
Fie

URL

et LI
— 20 B BT @ 50

[image: image21.wmf]Give the diagram a name then double click in it in the browser to open it. (See below). Notice how the tool bar and its button have changed.

[image: image4.png]o
x

unti equence Diagram: Logical View / Seq

tional
Fle Edt Vew Fomat frowse Report Took Addlns Window Hep

DEd =B g ROBRBEE &« 4

e %
e

3 Use Case View

= &3 LogalVew =

Main

3, dssocisions

Seuence Disgrant

€3 CamparentView
eployment View

@ Modsl Properies

EFER

N

1
[T

ForHelp,press F1
ki) T8 B GO 8 s gt [T] 0 @ @S @4 i

Adding Actors

If you haven’t already done so as part of your use-case analysis, create a new Actor in the Use-Case View, name it (system administrator in this example_ and then drag it onto your sequence diagram (see below).

[image: image5.png]tional Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram’
Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep NER

DEW BB FOBRBEE|Fe <]
- o e | I
e

= 03 Use CaseView e
 Main
2 Sysems Adriisator

2 Associations
EY _ Systems
= (3 Logical View Administrator

Main
Sequence Diagrant
3, Associalons
& FordFocus

C3 Component View
Deplayment View

Madel Pogertes

ERE

o R

) sy Ldentfying - _ OB R @T @R 153

Adding Objects

Now you can add the objects to your sequence diagram. Remember that objects are just instances of classes and thus there may be more than one instance of a class within you model e.g. a car has four wheel objects. You can drag classes from the browser onto your sequence diagram. Alternatively, you can just use the object toolbar button to add new objects to your sequence diagram. To name the object and set its class, double click on it and fill in the dialog box below

[image: image6.png]4 Object Specification for Untitled

General

Mame: [MyDadsFordFocus

lsss: [FardFacus

Documentation:

- Persistence:

© Persitent Static & Transient

™ Multile nstances.

Concel | Appb | Browsev| Heb |

Note: To set the class name, choose an option from the drop-down list box and select from the list of classes already present in the model (or the New option if you wish to create a new class to represent your object). Notice how the object changes on the diagram (see below). Its name is now of the form ObjectName: ClassName.

Note also that objects can be anonymous i.e. without name. This can be useful when modeling messages that pass to multiple instances of that class, For example, when large numbers of objects are created dynamically during program execution, it is impractical and event impossible to show them all on the sequence diagram, so an anonymous object is instead shown with only a class name to represent all instances of that class. Messages sent to this class imply that the message is sent to all instances of it.

[image: image7.png]tional Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram’
Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep NER

DEd BE & ROBRBEE & 4
I~ Systems Administator MyDadsFordFoous : FordFoous
B e

03 Use CaseView e
= &3 LogealView
Main

) Seauence Diegiam
Seauence Diageat Systerns

F osiions Administrator

C3 Component View
Deployment View
Model Proptiss

MyDadsFordFocus
FordFocus

ERE

press F1 [hom

) sy Ldentfying - _ OB R @T @R 152

Adding Messages to Sequence Diagrams

Once you have added some objects to your diagram, you can then add messages. Using the message toolbar button, drag a line from one objects ‘lifeline’ to another, as shown below.

[image: image8.png]tional

est2 - [Sequence Diagram: Logical View / Sequence Diagram
Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep NER

DEd BE & ROBRBEE & 4
I~ Systems Administator MyDadsFordFoous : FordFoous
B e

= 03 Use CaseView e
 Main
2 Sysems Adriisator

2 Associations
EY _ Systems
= (3 Logical View Administrator

Main
Sequence Diagrant
3, Associalons

B FoudFocus
C3 Component View [Obiect MyDadsFordFocus : FordFocus]

MyDadsFordFocus
FordFocus

ERE

Deployment View
Model Proptiss

press F1 [hom

B Ay centtyng _ BO BBl T @ 155

Double click on the message and enter the relevant details as shown below

[image: image9.png]@ Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1]
Fie Edt Vew Fomat Bowse Report Toos Addns Window Help

D@ B G RO BR

Sytoms Adminsttor R
S —

s

= 03 Use CaseView
% Main
% Systems Admiisator
2 Associatons
= 3 LogealView
Main
Sequence Diagrant
3, Associalons
& FordFocus
€3 ComparentView
Deplayment View
Madel Pogertes

ERE

BE|Fe aa

x

MyDadsFordFocus

oystems. FordFocus

Administrator

StartEngine

& Message Specification for StartEngine | 25 |

el | et |

Name: Class: FordFosus

Documentatior:

Document this message here

Cancel | 40 | Browse v

Help

press F1

N

[T

B Ay centtyng _ BO BBl T @ 153

In the detail tab set the type of message (see below) to simple (the default).

[image: image10.png]4 Message Specification for StartEngine

General Detai
Synchrorization

& Byl

€ Syrchionous
€ Baking

€ Timeout

€ synchionous
Freuency
 Apeiodc

€ Periodic

o] _tomet | ===

Help

Message Types

The table below describes the differences between the various types of messages

	Message Type
	Description

	Simple (default)
	The message has a single thread of control.

	Synchronous
	The operation proceeds only when the client sends a message to the supplier and the supplier accepts the message.

	Balking
	The client passes a message only if the supplier is immediately ready to accept the message; the client abandons the message if the supplier is not ready.

	Timeout
	The client abandons a message if the supplier cannot handle the message within a specified amount of time.

	Asynchronous
	The client sends a message to the supplier for processing and continues to execute its code without waiting for or relying on the supplier's receipt of the message. This is useful in multi-threaded systems.

Each type of message has its own visual representation as shown below

[image: image11.wmf]ObjectB :

ClassB

ObjectA :

ClassA

Message Type: Simple

Message Type: Synchronous

Message Type: Baulking

Message Type: Timeout

Message Type: Asynchronous

You will see from the above diagram that a ‘Focus-of-Control’ box (FOC) has appeared on the objects lifeline.

[image: image12.png]tional Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram’
Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep NER

DEd BE & ROBRBEE & 4
I~ Systems Administator MyDadsFordFoous : FordFoous
B e

= 03 Use CaseView e
 Main
2 Sysems Adriisator

2 Associations
EY _ Systems
= (3 Logical View Administrator

Main

Seuence Diagrant StartEngine

3, Assoialons
B FordFocus
3 ComporertView

Deployment View
Model Proptiss

MyDadsFordFocus
FordFocus

ERE

press F1 [hom

B Ay centtyng _ BO BBl T @ 1540

The FOC is an advanced notation which can be turned on or off as required. The intention is that FOC shows the length of time that an object has a thread of program execution actively running through it. When an object sends a message to another object, the thread of program execution passes from sender to receiver while the receiver carries out the message (i.e. its member function is executing), only to return again later when the receiver has finished. To control the display of this notation, choose, click Tools->Options from the main menu, select the diagram tab, and check the FOC option if you want it displayed.

[image: image13.png]Zoptions
pdeE3 | A5 | CORBA | Java | Oisckd | Ce | WoVC |
oM | Ve | VeslBss | xMLOTD |
Gered Disgan | Bromser | Notaion | Toobars | ANSICHs |
Compartnents Dispey
¥ Shon vshil ¥ Unissolved adornmerts
¥ Show stereatypes ™ Uit adommerts
I Show speraton signatues | | ¥ Colabaraion rumbeiing
¥ Show al aibutes ™ Sequence umbeing
¥ Show al gperaions I Hierachical Messages
™ Suppress atibutes ¥ Focus of contol
™ Suppress peratons I~ Thiee Tier Diagram
Message Signatures
& Type Orly € Name and Tope.
© Name Only None
Miscellneous Gid
¥ Double<ick o diagram ¥ Snap togid
¥ Automaic esiing Gidse [5
¥ Class Name Completion
A Roke Display
¥ Aggregation whole 0pat | | I Show e specier

Stereolype display
C Mone O Label Decoratin Jeon
% Show labels on elalions and assosiations

[Cancel Help

Below is a typical Sequence Diagram for starting a Car with an Automatic Gearbox (which must be in Park position before it will start) and then driving it away. See if you can follow it.

[image: image14.png]<& Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1] ; ﬁ E

Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep

BEE

D@ B G RO BR

B |[®

3 Use Case View
= 03 LogicalView
Main
Seauence Diagrant
£l Engie
B FordFosus
Bl Geabox
& Thotle
2, Associatons
& Handbiake
C3 Component View
Deplayment View
@8 Model Propetties

s

ERE

BE|Fe as

MyDad : Systems Administator

x

MyDad : Systems
Administrator

[=— CheckiiSober

MyDadsFordFoous : FordFoous

Mysearbox: Gearbox

MyThiote Thottle

MyEngine : Engine

MyHandbiake : Ha

MyDadsFordFocus MyGearbox MyThrottle MyEngine MyHandbrake
FordFocus Gearbox Thiottle Engine Handbrake

Selectear

CheckHandbrakeOn
CheckGearboxitParkPosition
StartCar
GetStatusOfGearbox
[GeatboxInParkPositio
StartEngine
CarRunning

DepressThrottleAmount)

ReleaseHandbrake

RevEngine

|

press F1

[T

Wm s . [T | @0 @ R S 659

Mapping Messages to Member Functions

Now that diagram has been captured, we can map the message to member functions within the classes. This is done by right-mouse clicking the message and selecting either an existing member function within the class or selecting ‘New’ to create a new function (see below) as we have done in the case of the CheckHandbrakeOn message.

[image: image15.png]<& Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1] ; ﬁ E

Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep

DER ' B2E &G RODEREBEE|F «| 2 &

X MyDad : Systems Administator MyDadsFordFoous : FordFoous Mysearbox: Gearbox MyThiote Thottle
B e

03 Use CaseView e
= &3 LogalVew
Main

Secuence Disgrant

BEE

MyEngine : Engine | MyHandbrake : Ha

MyDad Systems MyDadsFordFocus MyGearbox MyThiotle MyEngine | [MyHandbrake
MyDad Systems
£ Engine = KadSustern FordFocus Gearbox Thiotle Engine Handbrake
B FacFocus iR Adminishrator
B Gearbox
B Thotte @
2, Associaons - [E—1 CheckifSaber
i? Hordiroke CheckHandbrakeOn
amporert View i
Deplyment View Open Speckicaton
&8 Model Prperes CheckGearboxisparkPosiion EET=r
edt ,
StartCar
GetStatusOfearbox
[E== cearbaxinParkPosita
StartEngine
CarRunning

Selectear

DepressThrottleAmount)

RevEngine

ReleaseHandbrake

. |
=

[hom
Wm s [T |y @0 @ R S o

A class dialog box will open (see below) fill in the details for the new function.

[image: image16.png]A Operation Specification for opname

e W |

Gered | Dot | Frondtons |
Name: CheckHandbrakePosition Class: Handbrake
Fetun Tope: [book =] 1 Showclasses
Stereatype:

Export Contol
& Public " Prglected Private (" Implementation

Documentation:

oK Cancel | sorly | Browsev| Hep

Checking Your Model

The whole model can also be checked for consistency. This is particularly useful for sequence diagrams, since it can check of all messages have been mapped to member function. To performs such a check, choose Tools->Check Model (see below) from the main menu and examine the Log for any errors and warnings. Correct them if necessary.

[image: image17.png]<& Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1] ; ﬁ E

Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep

& x

D@ BB & RO

B

3 Use Case View

= 03 LogicalView

Main

Seauence Diagrant

£l Engie

B FordFosus

Bl Geabox

& Thotle

2, Associatons

& Handbiake

C3 Component View
Deplayment View

@8 Model Propetties

Create
Check Madel

Options.

synchronize,

adas3

corea

»

Model Properties

Open seipt.
New Script

ANSICH+
adass

Dta Modler

Felaa

ystems Administator

x

yDad : Systems
Administrator

[=— CheckiiSober

MyDadeFordFoous : FordFocus Mysearbox: Gearbox

MyThiote Thottle

MyEngine : Engine

MyHandbiake : Ha

MyDadsFordFocus

MyGearbox

MyThrottle

FordFocus

Gearbox

Thiottle

MyEngine
Engine

MyHandbrake

Handbrake

CheckHandbrakePosition)

CheckGearboxiParkPosition

Java

Oraes

StatCar

c

com

Visual Basic

xL._DTD

Ratianal Test

Model Integrator

eh Publsher,

Visual C++

Version Cartrcl

ieh Madler

GetStatusOfGearbox

[GeatboxInParkPositio

StartEngine

CarRunning

Selectear

Class Wigard,

DepressThrottleAmount)

ReleaseHandbrake

RevEngine

Checks the model for consistency

K

[T

Wm s [T |y @0 @ R S s

Adding Comments to your Sequence Diagram

Its sometime very informative to able to add comments to a sequence diagram to provide additional clues as to what is happening, particularly when the sending of a message is not straightforward.

For example, you can see below, that the car checks that gearbox is in park position. Then a message is sent to the engine to start. Was it the designer’s intention to send this message to the engine if the gearbox was NOT in park. Probably not, but a definitive answer could not be inferred from the diagram alone. For this reason, the designer has annotated the diagram with comments (these are usually placed on the left hand side, but they in fact be placed anywhere). Now the circumstance in which this message is sent is clear.

[image: image18.png]< Rational Rose - test2 - [Sequence Diagram: Logical

View / Sequence Diagram1]

Fie Edt Ven Fomat Growse Report Toos Addlns

Window Help

D@ B G RO BR

MyDad : Systems Administator

BE|Fe as

MyDadsFordFoous : FordFoous

Mysearbox: Gearbox

MyThiote Thottle

MyEngine : Engine

MyHandbiake : Ha

ad: Systems MyDadsFordFocus MyGearbox MyThrottle MyEngine
MyDad : Systems
= YT FordFocus Gearbox Thiottle Engine Handbrake

Only Drive if you are sober

Dangerous to start car unless handbrak is on

Dangerous to start car unless gearbox is parked

Send message to carto start

Car will check status of gearbox

Igearbox is in parked positior) {

Start the Engine

Send message to MyDad
inforring hirn car is running

Select a gear

Press thiottle to prevent roling
Thiottle reves the engine

Release the handbrake and drive away

press F1

[*

[=——1 CheckiiSaber()

CheckHandbrakePasition()

CheckGearbbxinParkPosition()

StartCar()

GetStatusOfGearbox()

T=—1 GearboxInParkPositiont)

StaEngine(}

CarRunning()

SelectGear()

DepressThrottle()

ReleaseHanflbrake()

RevEngine()

E:

[T

ki) B BT IO O s, | Blows coboi.. [T TIRENE S @8 @O\, S 1210

 Notice also that ‘hierarchical messages’ are also shown. This is another advanced feature, which can be controlled through the same options as the FOC.

Showing Argument Passing on Sequence Diagrams

So far we have only shown simple messages being passed from source objects to receiver objects and we know that these will ultimately translate into the sender object invoking a member function within the receiver object, but what if the message is more complex than that, what if the message requires information from the sender (and perhaps returns an answer to it), how do we show this on the interaction diagram?

Once we have mapped our messages to functions within classes, we set up the argument(s) and return type for that function in exactly the same way that we did when we created classes and class diagram, by double clicking on the class and selecting the operations tab, or you can double click on the object in the sequence diagram and select the browse class option on the browse button as shown below for the object MyHandbrake.

[image: image19.png]@ Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1]

Fle Edt Vew Fomat frowse Report Took Addlns Windon Hep

D@ B G RO BR

MyDad : Systems Administator

yDad ; Systems
Administrator

BE|Fe as

MyDadsFordFoous : FordFoous

Mysearbox: Gearbox

MyThiote Thottle

MyEngine : Engine

MyHandbiake : Ha

MyDadsFordFocus MyGearbox MyThrottle MyEngine
FordFocus Gearbox Thiottle Engine Handbrake

Only Drive if you are sober

1:| CheckiiSober()

Dangerous to start car unless handbrak is on

CheckHandbrakePasition()

Dangerous to start car unless gearbox is parked

CheckGearbbxinParkPosition()

Send message to carto start

StartCar()

Car will check status of gearbox

Igearbox is in parked positior) {

Start the Engine

Send message to MyDad
inforring hirn car is running

CarRunning()

Select a gear

SelectGear()

DepressThrott

Press thiottle to prevent roling
Thiottle reves the engine

Release the handbrake and drive away

press F1

Documentatior:

CheckGearboxin| % Object Specification for MyHandbrake
Gerera |
Nare: [MyHandbrake

= Gearbo
Class: [Handbrake. 5]

- Persistence:
© Persistent

© Stalic

& Transient

V' Multple instances

Carcel | Aol

Select infrowser |

Browse Parent
Browse Class

Shaw Usage.

E:

[T

ki) B BT IO O s, | Bloss cobboi.. [EEIIERE S @8 @0\, RS 125

As an example, let’s make the DepressThrottle and RevEngine messages take an integer argument each. Go to the classes that represent them, i.e. ‘Throttle’ and ‘Engine’ and open the specification for them. Then go to the ‘operations’ tab and, as we did before for classes, insert a new argument of type ‘int’ each of these two operations. When this is done the interaction diagram should look like this

[image: image20.png]<& Rational Rose - test2 - [Sequence Diagram: Logical View / Sequence Diagram1]

Fle Edt Vew Fomat frowse Report Took Addlns Wndon Hep

DEd ‘BE gROBRBEE &« 4

MyDad : Systems Administator MyDadsFordFoous : FordFoous

Mysearbox: Gearbox

MyThiote Thottle

MyEngine : Engine

MyHandbiake : Ha

ad: Systems MyDadsFordFocus MyGearbox MyThottle MyEngine
MyDad : Systems
= YT FordFocus Gearbox Thottle Engine Handbrake
L
Only Drive if you are sober T=——1 CheckifSaber()

CheckHandbrakePasition()

Dangerous to start car unless handbrak is on

CheckGearbbxinParkPosition()

Dangerous to start car unless gearbox is parked

StartCar()
Send message to carto start :

Car will check status of gearbox CheckGearboxinParkPosition)

1]

Ifgearbox is in paked position) { GemtbonParkPosiiont)
J=—1 GearboxinParkPositon|

Start the Engine

StaEngine(}

Send message to MyDad

CarRunning()

inforring hirn car is running

Select a gear

SelectGear()

DepressThrottle(int)

Press thiottle to prevent roling
Thiottle reves the engine

Release the handbrake and drive away

ReleaseHanflbrake()

| RevEngine(int)

press F1

[Cbject MyThotte

Thte]

E:

[T

ki) B BT IO O i, | Bloss cobboi. [EIIERE w @8 @O\, RS 127

Code Generation and Interaction Diagrams

Unfortunately, Rose generates no code for any interaction messages that are shown on an interaction diagram. (It would be extremely difficult anyway if you think about it), so you have to manually go through the process of

1. Creating, via your own code, the instances of classes (i.e. the objects), represented on the interaction diagram

2. Mapping the messages shown in the diagram into function calls applied to the objects, including any argument passing and saving any returned answer.

Collaborations and Interactions : PJ Davies
05/02/2002
Page 8

_978258260.doc

