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Abstract. Image reconstruction in electrical impedance tomography using the
sensitivity theorem is generally based on the assumption that the initial
conductivity distribution of the body being imaged is uniform. The technique of
image reconstruction using this method is described and reconstructed
images are presented. Improvements in image quality and accuracy are
demonstrated when accurate a-priori ‘anatomical’ information, in the form of a
model of the distribution of conductivity within the region to be imaged, is used
to construct the sensitivity matrix. In practice correct a-priori information is not
available, for example, the conductivity values within the various anatomical
regions will not be known. An iterative algorithm is presented which allows
the conductivity parameters of the a-priori model to be determined during
reconstruction.

1. Introduction

The methodology of two-dimensional (2D) electrical impedance tomography
(EIT) has been described in detail elsewhere (Barber and Brown 1984, 1990,
Brown and Seagar 1987). Electrodes are positioned with equal spacing
around the body to be imaged thus defining a plane through the object.
Voltage profiles are collected for all drive and receive electrode-pair
combinations and images are reconstructed as though the data were from a
2D object. In this work 16 electrodes have been placed around a circular
object. Current is driven into the object through two adjacent (drive)
electrodes. For each of the 16 drive-electrode pairs, 13 voltage differences
between the remaining adjacent non-current carrying (receive) electrodes are
recorded. In practice objects are three-dimensional (3D); current cannot be



confined to one plane. However, the reconstruction algorithm usually
assumes that the object is 2D. This paper will only deal with proper 2D
reconstruction.

Previous investigations of such an approach includes the incorporation of a-
priori information into the Sheffield filtered backprojection image
reconstruction algorithm, which showed some success (Avis et al 1995). Also,
Zadehkoochak et al (1991) presented a reconstruction algorithm based on the
inversion of the sensitivity matrix associated with a non-uniform conductivity
distribution using the singular value decomposition (SVD) method. They did
not present any reconstructed images. Zadehkoochak et al (1993) have also
investigated the use of a-priori information associated with imaging the thorax
and reported artefacts in the resulting images. The use of a universal model
(a standard model of internal conductivity distribution within the human thorax)
has been speculated by Zadehkoochak et al (1993) to be invalid; however, it
will been shown that providing the assumed anatomical model is closely
matched to the patient's anatomy an improvement in the reconstructed image
is achieved.

The conductivity of a region, discretised into small areas or elements, can be
written as a column matrix or vector. When this conductivity changes from a
reference conductivity distribution o  (where each element has units of
conductivity (Sm'1)) to a conductivity o 4, (Where each element has units of
Sm'1) it represents a change in conductivity AG =0 y;- 0 o, Where Ao isa
vector of the same size as both 0 4, and o . Images of this change in
internal impedance distribution can be reconstructed from the resulting
change in differential boundary voltages measured in volts (A vV = Vgg - Vief)
from a uniform conductivity distribution, where vy, , v, and A v are column
vectors, usually of a different size from the conductivity vectors; the actual
size depending on the number of independent differential boundary voltage
measurements. These images of conductivity change can be obtained using a
relationship described by a sensitivity matrix (S) which is derived using a
theorem by Geselowitz (1971). This relation is given by:

Av = SAC (1)

where S is a sensitivity matrix (usually non-square), Ao is a vector
containing the changes in conductivity and A v is a vector containing the
corresponding changes in voltage profiles. S relates the small conductivity



change within each individual pixel of the image to the corresponding
differential boundary voltage change for each and every pixel and each and
every drive-receive electrode combination. The relationship between A v and
Ao is often assumed to be linear (Barber and Brown 1990) and thus the
elements of S are independent of conductivity. S is usually calculated by
assuming that the initial conductivity distribution is uniform, i.e. all elements
within a region to be imaged have the same conductivity value (Barber and
Brown 1990) and then calculating the resulting boundary voltage changes due
to small perturbations in the conductivity values for each and every element.
The sensitivity matrix derived in this manner is, in this paper, called the
uniform sensitivity matrix, denoted by S, However, the relationship between
the conductivity changes and the corresponding differential boundary voltages
is not linear and virtually no interrogated region is uniform. The current
distribution and therefore the voltage distribution within a body depends on
the conductivity distribution within the body and as a consequence this is also
true of the sensitivity matrix. For example, a small change in conductivity next
to a physically large conductive area will have a smaller effect on the
boundary voltages than the same small change in conductivity next to a
relatively small area. Thus the coefficients of the true sensitivity matrix vary
with the conductivity distribution and this matrix is referred to in this paper as
the ideal sensitivity matrix, Sigeq- In general therefore, although the sensitivity
matrix S changes with the conductivity distribution and equation (1) is
therefore non-linear, it has been argued that for small changes in conductivity
this non-linearity can be ignored (Barber and Brown, 1990). Shaw et al (1993)
have also reported a similar result, namely that for a small region, the linear
approximation is valid for the conductivity changes of up to 300% of the
background.

We have determined that the assumption of linearity by Barber and Brown
(1990) is violated in conditions where there is a wide range of conductivity
values; this is in accordance with findings by Seagar (1983). Given accurate
spatial and conductivity information about a region to be imaged, an accurate
image of the impedance distribution can be reconstructed from the boundary
voltage data. Although this may be self-evident, it shows whether or not the
relationship described by equation (1) is valid. It also shows the extent of the
blurring of the image due to the algorithm and computational process. Also, it
serves as a benchmark for images obtained using less a-priori information
and as such is the "best" image that can be obtained. Recognising that in
general complete anatomical information will not be available, this paper will



address the degree of accuracy needed in the a-priori information in order to
produce a useful reconstructed image. If the method is reasonably robust it
may be possible to use anatomical information taken from a database rather
than from the subject being imaged, contrary to previous speculations
(Zadehkoochak et al (1993)). However it will be shown in the work presented
in the paper that providing the model is closely matched to that of the
interrogated area an improvement in image quality is achieved. It also will be
demonstrated how the present widely used sensitivity algorithm can be
combined with an approximate knowledge of the spatial distribution of the
tissues to provide a better estimate of the conductivity values.

2. Method

In order to generate the sensitivity matrix S the area of interest, a 2D circular
tank, is split into 1920 triangular and brick elements as shown in figure 1. The
elements representing the modelled electrodes are not shown in the
reconstructed images and the central elements are not displayed well due to
their small size.

The sensitivity matrix S is a matrix of 208 by 1920 coefficients. The 208 rows
of the S matrix relate to the 208 different differential voltage readings and the
1920 columns to the sensitivity coefficient for each independent element.
There are 13 voltage measurements for each of the sixteen projections, giving
208 voltage readings. Each of the 1920 elements in the model has its
conductivity value perturbed from a uniform value and this small change
generates 208 differential boundary voltage changes. The sensitivity
coefficient for each element i was calculated from Geselowitz’s lead theory
(Geselowitz 1971) and is given by:

Siin = —L Uo,, MW, Ldu (2)

where j = j(m,n), ® ,, is the potential distribution generated in an object when
unit current is passed through the electrode pair m before a change in
conductivity (o ) and W, is the potential distribution produced if unit current
had been injected through electrode pair n after the change in conductivity to
0 4ot NAs occurred. j is the drive and receive electrode combination and the
integration is over the area of the element u, i.e. multiplication of the dot
product with the area of the element u.



The electric fields O0® and OW are calculated for each element using an
available finite element package. The two vector components of the electric
field (Ex; and Ey;) are calculated at the centre of each element for every drive-

electrode combination.

As @, and W, are derived for different conductivity distributions equation (1)

is non-linear in terms of conductivity. However, for small changes in
conductivity about o .4, W, can be replaced by the equivalent potential
calculated for o  and this linearises the problem. For large changes the

assumption of linearity is no longer correct: a problem this paper addresses.

The linearised sensitivity matrix S, is calculated assuming that the

conductivity distribution is uniform before and after a change has occurred
and this is the matrix which has been used to date even when the reference
conductivity is not uniform (Barber and Brown 1990, Kotre 1989).

The sensitivity coefficient for each element of S,z was calculated using
equation (3), where for the electric field (Ex,,, Ey) in element i is due to the
current injected through electrode pair m and the electric field (Ex,, Ey,) is
that produced when the same current is injected through electrode pair n.

Sum‘f(j’i) = _J-(Exm7Eym)'(Exn’Eyn)du (3)

The integration is again over the area of the element u.

In principle the calculated sensitivity matrix can now be used to reconstruct an
image of the change in conductivity distribution calculated from the boundary
potential differences. This relationship can be derived from equation (1) to
give:

Ao =S'Ay (4)
where S™ is the inverse of S.

S is a non-square (208 x 1920) and ill-conditioned matrix. Using the damped
least squares method (Menke 1989):

Ao =[S"S+AF_11"'S"Av (5)

max

where ST is the transpose of S, A is the regularisation factor, F., is the
maximum main diagonal element value of matrix [S’S] and I is a unity



diagonal matrix of same size as [S'S]. The square matrix [S’S] is regularised
in order to reduce the condition number for the system and hence obtain an
approximate inverse and hence an approximate solution. For a non-zero
value of A an inverse can be calculated although its condition number, and
hence the stability of the inversion, will depend on A . Generally speaking if A
is large the reconstructed image will be too smooth and blurred but if A is too
small the image will be dominated by noise.

Figure 2 shows an example of the effect of varying A on the (resultant)
reconstructed image. In this case the sensitivity matrix is that calculated for
uniform conductivity distribution, S,.;. The model used to generate the
boundary voltage data is also shown in figure 2(a). The conductivity values
used in the finite element model are shown in Table 1 (Weast R, 1989). These
conductivity values are different but not significantly different compare with the
values used by other workers but note that the underlying principle described
here will apply to any tissue conductivity value. S,;; was calculated by using a
uniform conductivity distribution consisting of skeletal muscle tissue. A is
represented as fraction of the maximum diagonal value of matrix [S”S], where
Fmax = 2.8653x 107", In general terms, as A decreases, more singular values
of matrix [S”S] are included in the calculation of the pseudo-inverse. It can be
seen that this results in the image of the organs being pushed in towards the
centre of the interrogated area and the image also contains more artefacts.
For higher values of A the image of the organs looks more spread out and
blurred. These images are static images and are produced by adding the
known reference conductivity (0 ) to the calculated change in conductivity
Ao .

Table 1. The conductivity values of biological tissue.

Muscle Lung Heart

Conductivity (Sm”) 0.74 0.11 1.16

We now replace the sensitivity matrix S, with the correct sensitivity matrix
Siqear- The calculation of the sensitivity coefficient for each element of Siyeq iS
done by modifying equation (3) to include the change of conductivity to give:

S[dea[(j,,') = _I(Exrn’Eym)‘(E'xn’ E' Y, )dlxt (6)



where for element i the electrical field components (Ex,,, Ey,,) in element i are
due to the current injected through electrode pair m for the uniform
conductivity and the electrical field components (E'x,, E'y,) produced when
the same current had been injected through electrode pair n after there has
been a change in conductivity from o , t0 O 44, fOr pixel i, where o . is the
uniform conductivity, i.e. 0.74 Sm'1, and o 4 is the actual conductivity of pixel
i for the thorax model used.

Figure 3(a) shows four two-dimensional models of the human thorax used for
the calculation of the corresponding four electric field distributions and the four
resulting differential boundary voltage profiles. Figure 3(b) shows the resulting
reconstructed images using the calculated boundary voltages and the
corresponding Si4eq fOr each of the thorax models with A set at 0.01 for the

calculation of each pseudo-inverse. F,,,, for a typical ideal sensitivity matrix is
5.9324x 10"°. The conductivity values used are again as shown in Table 1.

The sensitivity matrix S;yeq for each of the four models has a rank of 208 and
is better conditioned than the corresponding square matrix formed from S,
a result which has not been commented on before.

The rank of 208 for a sensitivity matrix calculated from two non-equal electric
field is not surprising as the reciprocity in this ideal sensitivity matrix will no
longer be valid. But reciprocity in the differential boundary voltage data still
holds and therefore the maximum possible rank of the data set will be104 and
therefore the overall underlying problem of reconstruction will have only a
rank of 104.

Figure 4 shows a plot of the singular values of two square matrices [S'S],
calculated using Synis and Siqeq- Initially, the differences between the singular
values of the two different matrices are small. After the first 30 values the
singular values from the square matrix [S’S] formed using S,,; decay more
rapidly than those of the square matrix [S"S] formed using Sige- This means
that larger singular values are used in image reconstruction when using Sjgea
resulting in a better reconstructed image. The reconstructed image of the
modelled ideal human model obtained using S,4eq, figure 3(b)i, is more
accurate than the corresponding image obtained using S, figure 2, because
Siqear iNcorporates the correct full anatomical and conductivity information.
However, in clinical practice, the information used in the calculation of Sigeq iS
not available.



In a clinical case where no information about the internal conductivity
distribution is available it may be possible to estimate the conductivity
distribution. For example, if an anatomical image from another high resolution
modality, such as MRI, were available it should be possible to use this data,
plus published values of tissue conductivity, to construct an initial S;yeo Which

should certainly be an improvement on S,,;. However, a more economical
approach might be to use an MR image taken from a data base of images. In
this case the image would not be a perfect match to the patients' anatomy but
could be sufficiently close to provide a useful S;4eq. TO test this approach, a
total of six different a-priori models, figure 5, were constructed, whose spatial
conductivity distributions were varied from an over-estimation to an under-
estimation of the patient model of figure 2(a), the ideal model. The
conductivity values for the regions within the six models were calculated by
superimposing each model onto the ideal patient model and averaging the
conductivity values of each element within the area covered by each non-ideal
patient region. The total conductivity of each model is kept constant and equal
both to each other and to the ideal model. This method of calculating the
conductivity values was chosen rather than using a typical set of published
values to allow for a wider range of possible conductivity values. The model is
not restricted to a fixed geometry and also the regional conductivity values are
allowed to vary within a considerable range. The conductivity values used for
each model are shown in Table 2.

Table 2. The conductivity values used for the non-ideal patient models shown in

figure 5.
Muscle (Sm'1) Lung (Sm'1) Heart (Sm'1)

Model (a) - 0.07 0.64
Model (b) 1.5 0.08 0.8
Model (c) 0.75 0.11 1.06
Model (d) 0.5 0.17 1.6
Model (e) 0.38 0.33 3.19
Model (f) 0.3 - -

These models were used as the a-priori information and a new ideal
sensitivity matrix was calculated for each of the six different a-priori models
using the same method as described for the previous example. Two
regularisation factors, A of 0.1 and 0.01, were chosen for image
reconstruction for each case. These values have been selected a posteriori by



visual examination. The regularisation parameter could also be chosen by
some objective method (for example the L-curve method or the Morozov
discrepancy principle) but these do not always give (visually) meaningful
results (Kolehmainen et al 1997). Also, in practice, where there is more noise
than usual in the data, a high value such as 0.1 must be used to minimise the
reconstruction error by damping out the noise with a consequent loss in
spatial resolution. This is visually evident from the reconstructed images
shown in Figure 2.

The boundary voltage data taken from the ideal patient model was used to
reconstruct a set of images using each of these six new ideal sensitivity
matrices for each of the two values of A ; figure 6(b) (A = 0.1) and figure 6(c)
(A =0.01). As a measure of the accuracy of the new reconstructed images,
the A rms, on a pixel by pixel basis, was calculated with respect to the ideal
The A rms values for the six images in figure 6 are shown in Table 3. The
A rms is given by:

Arms - li) X \/(a(i)calculated _ U(i)ideal) E (7)

2 E

where 0 (i)cacuated 1S the calculated conductivity for a pixel, 0 (i)igea iS the

'ideal' or best reconstructed conductivity for the same pixel and u is the area
of the pixel.

Table 3. The A rms of the new reconstructed images shown in figure 6(b and c) with

respect to the ideal reconstructed image, figure 6(a)i-ii.

A rms (A =0.1) A rms (A =0.01)

Model (a) 136 % 10° 2.06% 10°
Model (b) 9.97 x 107 156 x 10°
Model (c) 6.40 x 10" 9.03x 107
Model (d) 115x% 10° 1.70 x 10°
Model (e) 1.42x 10 252 x 10°
Model (f) 130 x 10° 3.34% 10°

The smallest value of the A rms is seen when model (c) is used for the a-
priori information, where this a-priori model matches the actual model well
with respect to both geometrical and conductivity information. When a-priori



model (b) is used the reconstructed image gives the second best results.
Since this model has a geometry similar to the actual model, but a different
conductivity, this highlights the importance of correctly chosing a suitable a-
priori model of anatomical information. The A rms increases as the
differences between the a-priori model and the patient model increases; it is
worth noting that the value of A =0.1 reconstructs the more accurate image.

These models all contain some estimates of the conductivity values of the
tissues. In practice these may not be known with any accuracy; indeed, the
determination of the conductivity values is an important aim of EIT imaging. It
has been shown that using a close approximation of the internal conductivity
distribution improves the quality of the reconstructed images. It will be now
shown how the anatomical information can be used, without making any prior
assumptions about tissue conductivity values, in order to determine these
conductivities.

Initially, all the conductivity values are assumed the same. The boundary
voltage data from the ideal patient model is used together with the uniform
sensitivity matrix S, to reconstruct an initial image of the internal conductivity
distribution for the ideal patient. The ideal structural information as shown in
figure 7(a)i was super-imposed over the reconstructed image figure 7(b)i for
(A = 0.1) and figure 7(c)i for (A = 0.01), and the reconstructed conductivity
values of the initial image in each segment of the superimposed image were
averaged. These conductivity values were used to calculate a new electric
field distribution and hence a new sensitivity matrix which was then used to
produce another new reconstructed image. This step was repeated until no
further improvement to the reconstructed images was found; in this case after
9 iterations. Two regularisation factors A =0.1, figure 7(b), and A =0.01, figure
7(c), were used. To measure the accuracy, the ideal image was reconstructed
for each value of A |, figure 7(a)ii and (a)iii, and A rms was calculated for each
image with respect to its ideal image reconstructed with the same value of A .
The reconstructed images at iteration step 9 of both values of A are shown in
figure 7(b)ii and figure 7(c)ii.

If the sensitivity matrix is not correct it is possible, due to high non-linearity of
the problem, for negative conductivity values to be calculated from boundary
voltage data - a physical impossibility. Where this occurred the conductivity
was set to the small value of 0.01 Sm™. The conductivity values for each
region calculated at iteration steps 1 and 9 are shown in Table 4.
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Table 4. The conductivity values for each region of images found in figure 7b and 7c

Muscle Right lung  Left lung Heart
(Sm’) (Sm™) (Sm™) (Sm™)

A =0.1: lteration step 0.67 -0.04 -0.01 0.62
;\ =0.1: lteration step 0.69 0.26 0.27 0.69
i=0.01: lteration step 0.55 -0.78 -0.71 0.73
;\ =0.01: lteration step 0.71 0.48 0.47 0.79
9

Figure 8 shows the plot of the A rms calculated for each of the two
regularisation factors at each step of the iteration process.

It can be seen that after the 1st iteration the A rms is reduced and in spite of
the oscillatory behaviour some further improvement in the image quality
measure seems possible although the image does not converge exactly to the
ideal image. It can be seen that due to non-linearity the calculated
conductivity values, shown in Table 4, the values at iteration step 1 are
inaccurate, and in some cases negative; by iteration step 9, although the
calculated conductivity values do not accurately match the actual values, they
are no longer negative and are closer to their actual value.

The aim of the next set of experiments was to investigate how close the
estimated anatomical structure must be to the actual patient anatomy model
for a successful iteration, i.e. an improved reconstructed image. In this part of
the study boundary data was calculated from three various patient models
using the models shown in figure 9(a)i-iii. These data sets were used together
with a pre-defined set of internal conductivity distribution, figure 9(b), in the
iterative method already described. In this case we simulate the situation
where the a-priori model for the anatomy was the same for all modelled
patients. The reconstructed images using the uniform sensitivity matrix are
shown in figure 9(c)i, figure 9(d)i and figure 9(e)i for each patient model data
shown in figure 9(a)i-iii respectively. The reconstructed images at iteration
step 9 is shown in figure 9(c-e)ii. The regularisation factor of A =0.1 was used
for all cases. The conductivity values for each region calculated at iteration
steps 1 and 9 are shown in Table 5.
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Table 5. The conductivity values for each region of images found in figure 9(c) - 9(e)

Muscle Right Left lung Heart

(Sm™) lung Sm’)  (Sm’)
(Sm’)

Image 9c: Iteration step 1 0.35 -0.51 -0.48 0.70
Image 9c: Iteration step 9 0.58 0.50 0.49 0.77
Image 9d: lteration step 1 0.66 -0.05 -0.03 0.60
Image 9d: lteration step 9 0.68 0.27 0.27 0.68
Image 9e: lteration step 1 0.75 0.26 0.27 0.61
Image 9e: lteration step 9 0.75 0.34 0.35 0.65

Figure 10 shows the plot of the A rms calculated for each of the images in
figure 9(c-e) with respect to their ideal image reconstructed at the same value
of A =0.1.

It can be seen that once again after the 1st iteration the A rms is reduced and
again although the behaviour is oscillatory some further improvement seems
possible. The best improvement is seen in the images reconstructed when the
patient data comes from a model which closely approximates the a-priori
model used for the iteration. It can be seen from the calculated conductivity
values that due to the non-linear nature of the problem, negative
conductivities were calculated at iteration step 1. By step 9, however, using
the technique for handling negative calculated conductivity values previously
described, the final conductivity values were generally closer to the actual
conductivities. The image in Figure 9(d)ii is the closest to its ideal
reconstructed image, demonstrating that the use of a-priori anatomical
information close to the true anatomical information produces better
calculated conductivity values.
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3. Discussion

Three cases have been presented where the inclusion of anatomical a-priori
information into the reconstruction algorithm has been tested. In the first case,
a complete set of a-priori information was used. This included not only the
internal conductivity distribution (geometrical positions of organs) but also the
true conductivity values of each region. The resulting reconstructed image
showed a great improvement in comparison with an image reconstructed
where no a-priori information had been included. This shows as expected that
given all the a-priori information a much more accurate image can be
reconstructed from the boundary data. Of course, if such information were
available no imaging would be required but this work does show the best
usable image possible. In the second case, an a-priori approximation was
made to the internal anatomy (six approximate cases, from over-estimation to
under-estimation), together with an estimate of the conductivity values for the
interrogated area. The results show an improvement in the (resulting)
reconstructed image compared to the images obtained using only the
standard sensitivity matrix S, The best improvement is seen when the
approximation to the internal structure is a close match to the actual anatomy.

This work has shown that a high value of regularisation factor works well
compared to smaller values where computational noise is present. Also, it has
been shown that it is possible to iterate from the initial reconstructed image to
a more accurate image using a sensitivity matrix which has been calculated
initially from a uniform conductivity distribution together with the anatomy of
the region to be imaged. Using this method, improvements are seen after the
first iteration. No visible improvements were found after the ninth iteration.
Finally, the boundary data from three patient models have been used to
reconstruct images using a sensitivity matrix which was initially calculated
from a uniform conductivity distribution. Using a model of the estimated
anatomy, it has been found that there is an improvement in the reconstructed
images using the iterative method proposed here. The best improvement
were seen when the a-priori anatomy closely matched the modelled patient's
anatomy. Traces of the anatomical model used to estimate the a-priori
information can be clearly seen in all the final images reconstructed using this
iterative method. These images may not be visually more accurate but the
calculated conductivity values are more accurate than those where the
reconstructed images are obtained as a single pass from the uniform
sensitivity matrix.
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Future work on this image reconstruction method could include the ability to
adjust the shape of the anatomical information, within appropriate constraints,
to more closely represent the anatomy of the patient. This could be done by
defining an appropriate warping function whose parameters are treated as
unknowns in the reconstruction process. To further investigate the accuracy of
the a-priori information needed, the effects due to rotational mismatch of the
anatomical information used can also be studied. Chest expansion has been
shown to create an additional artefact in EIT measurements of the thorax
(Alder et al 1994). Further considerations may be needed to include more
accurate a-priori information where any chest expansion is considered.

4 .Conclusion

A considerable improvement in the reconstructed image can be obtained by
using accurate a-priori information about a region to be imaged. It has also
been shown that a close approximation of such a-priori information also
produces an improved reconstructed image. Finally, it has been demonstrated
that given the present widely used sensitivity matrix which is calculated from a
uniform conductivity distribution, together with a good approximation of the
internal anatomy, it is possible to reconstruct a much improved image of the
internal conductivity distribution using an iterative method. This improved
image is more accurate in a quantitative manner, where the calculated
conductivity values are nearer to the actual tissue conductivity values.
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