MICROCHIP PIC Assembler Exercises and Assignment
Write assembler programs for the problems below. (See notes at the end of this handout on using the MPLAB Integrated Development Environment)
Remember to comment your programs adequately.
You should keep and use log book to write down your programs before they are entered into MPLAB and also to make notes on your findings/understanding of the instructions and how they operate. This is a requirement for all the labs on this module.
Use the simulator where possible to test your programs and use the target PICDEM2 board to try your programs that make use of the peripherals such as the parallel digital I/O ports, timers, UART and the devices connected to them.
1. Load the literal values 0x36 and 0x3B into two file registers called NUM1 and NUM2. Step through the program using the Step Over command of the simulator and monitor the file registers and the WREG using the various views.
2. Modify Exercise 1 to add NUM1 and NUM2 together and store the result in another file register. The program should not modify NUM1 or NUM2. Check the result and the STATUS register bits. Repeat with the following values for NUM1 and NUM2

NUM1

NUM2

0x36

0x70

0xFF

0x09

0x80

0x70

What do the binary bits of NUM1 and NUM2 represent? They could be signed (2's complement 8-bit) or unsigned (8-bit binary). Does this help you to understand the significance of the STATUS bits.

Notes:

You will need to allocate file registers using the CBLOCK ENDC directives for the variables NUM1, NUM2 and RESULT
The program should be placed after the Main: label in the assembler source file. You will need the following assembly language instructions in the program, and maybe some others.

MOVLW literal

MOVWF variable_name,dest

ADDWF variable_name,dest

Here is the outline of the program in pseudocode. Lines beginning with ";" are comments.

A "?" means that you have to work out what instruction you need.

; Program to add two 8-bit numbers

; --

; Start by putting numbers into memory variables

move 7 to WReg

move WReg to variable NUM1

move 8 to WReg

move WReg to variable NUM2

; retrieve number1 and put in Wreg

?

;add NUM2 to WReg and store answer in WReg

?

; store answer from WReg to variable RESULT

 ?
Some instructions require a destination to be specified as an operand. This is specified by using F(f) or W(f) as the destination. Use such an instruction and see the difference between using F and W. What happens if you omit the destination in the instruction?

3. How could we deal with numbers that are to big to fit in an 8-bit register, for example 300? Answer store in two 8-bit sections forming a 16-bit value.
E.g. 300 decimal is 100101100 in binary or using16-bits is 0000000100101100 or 0x012C in hexadecimal. So we have a high-byte of 00000001 (0x01) and a low-byte of 00101100 (0x2C). These 16-bit values can be processed just like 8-bit values, for example we can add two 16-bit numbers by adding the low bytes together then the high bytes together making sure to also add any carry produced in the addition of the low bytes. In fact this can be extended to any number bits.
Write a program to add two 16-bit values. Test the program with suitable values.
4. Write a program to subtract one number from another. Test your program with various test values and note the results obtained and the values of the STATUS register bits. (Optional: write a program to subtract, multiply and/or divide multi-byte values)

5. Write a delay subroutine called Delay10ms that creates a fixed delay of 10milliseconds. Evaluate your subroutines accuracy using the Stopwatch facility of the simulator.

In order to create variable length delays write another subroutine Delay10msxW that calls the Delay10ms subroutine n times where n is passed into the subroutine as a value in the WREG.
For the remaining exercises try out the programs on the PICDEM2 target board (See notes on the PICDEM2 board in this handout)

6. Using the subroutines available in the UART.asm file (read through the file to discover the subroutines that are available) write a program that initialises the UART of the PIC 18F452 and outputs a message to the serial port of the PICDEM2 board. Then in a loop increment a file register and at each iteration of the loop output the file register value as two hexadecimal characters i.e. 00 to FF. This program should be tested on the PICDEM2 target board with the serial terminal connected to the PICDEM2 serial port.
7. Write a program that configures PORTB bit 3 as an output and turns the bit on and off every 0.5 seconds. Use the 18F452 Timer 0 in 16-bit timer mode with a polling strategy to measure the 0.5 seconds. Can you make a general purpose subroutine that uses the timer to generate delays?

8. Write a program that configures PORTB bits 0-3 as outputs and PORTA bit 4 as an input. Use a file variable that is initialised to zero. In a loop poll the input pushbutton switch and every time the input changes from 1 to 0 increment the file register and output the file register value to PORTB and also output the file register to the serial port in hexadecimal.(Note: Check this on the PICDEM 2 board which has a switch connected to PORTA bit 4).
9. Write and test a subroutine to convert an 8-bit binary value in the range 0 to 99 into two BCD digits. Eg 00101010 (which is 42 decimal) would be converted to 01000010. Now convert the two BCD digits into two 8-bit ASCII codes and output them to the serial output.
10. Write and test a subroutine that converts a binary value into decimal. Convert the decimal digits into ASCII character codes and output to the serial port.

Assignment

Write a program that will measure a persons reaction time.

Hint: You should use the various inputs and outputs available on the PICDEM2 board along with a hardware timer.

Assessment will be through submission of a report explaining your program design and a complete fully documented assembly language source program

This assignment will contribute 30% of the final module mark.

Deadline for submission 3.00pm Monday Jan 15th 2007

I suggest you complete the basic program by Dec 15th 2006.

[image: image8.png]=Tk
FEle Edit View Project Debugger Progammer Tools Configure Window Help

|osu|imazne|ocsmnw/om| » BOORE | Bhke

[image: image2.emf]
[image: image3.emf]
[image: image4.emf]
[image: image5.emf]
[image: image6.emf]
Building and running an assembly language program for the
Microchip 18F452 microcontroller

1. Create a Project for the program
Use the project wizard(see the project menu) to create a project on your homespace. Click on Next.

Step 1. Device is 18F452. Click on Next.

Step 2. For the Active Toolsuite : Select Microchip MPASM Toolsuite. Do not alter any other items on this window. Click on Next.

Step 3. Enter a name for your project and use the Browse button to navigate to a folder on your Homespace where the project will be created. Click on Next.

Step 4. Do nothing on this window! Simply click on Next.

Step 5. Click on Finish.

2. Add the assembler file to the project

RMC (Right Mouse Click) on the Source Files folder in the project workspace and select Add Files. Navigate to the folder containing the assembly source file you wish to add to the project and click Open.

3. Make the program

Select the Make icon or Make from the Project menu or press the F10 key.

The program should build with no errors. This invokes the PIC Assembler program which converts the Assembly instructions into the binary machine language for the Microchip 18F family of microcontrollers.

4. Running the program – Two approaches

a) Simulation on the PC

i. [image: image1.emf]Select Debugger > Select Tool > MPLAB SIM from the menu. Additional icons should appear on the toolbar.
ii. At this point we could simply click the run button but we would see nothing happening. We need to set up the MPLAB environment to watch various aspect of the simulation. Use View > Special Function Registers and View > File Registers to see all the SFR’s and general file registers (i.e. user RAM) or View > Watch and select specific registers to watch.

iii. The additional toolbar icons allow the program to be Reset, Stepped line by line or animated (i.e. executes few instructions per second, the speed is configurable). While stepping through a program the green arrow indicating the program counter location is updated along with all the onscreen windows such as the Watch window.

iv. Breakpoints can be set at specific program locations and when the program is run the execution will halt at the breakpoint location. Note: While the program is running the simulator does not update the on screen windows such as the Watch window. Update will occur when the program halts.

v. Many more features exist in the simulator – see the User Guide and the Help menu for more details.

a. Download to the PIC18F452 on the Target Board and execute
1. [image: image7.png]" MPLAB IDE v7.30 =10l x|
Eie Edt View Project Debugger Progiammer Toos Configre Window Help

|DeE|ima|2ae| ocesEBe S| v v e

i

PssH | P2 poo o frovedee

Select MPLAB ICD2 from the Debugger menu. New icons should appear:-

2. Click the circular red/blue icon that should now be displayed. This should establish a connection to the PICDEM2+ Target Board.

3. Click on the Program icon. This transfers your binary machine code to the program memory(Flash ROM) in the PIC18F452.

4. Assuming there have been no error messages select the run icon (Play button) to execute the program you have just downloaded into the microcontroller.

PAGE
3

