Infineon 167 Programming Exercises

Infineon 167 Tutorial Exercises

The following exercises should be completed before starting any assignments. All programs should be developed and simulated using the u-Vision2 development system and simulator/debugger. It is essential you become very familiar with these software tools.

Important notes:

· Initially create one project and for each question delete the previous C file(s) from the project and add the new C file(s).

· Remember to add the assembler file start167.asm to your project.

· Enable the option "Periodic Window Update" from the view menu when you simulate your programs.

· Layout your program according to the information in the C style guide (see template C program at the end of these notes)

· The number zero is 0 and the letter 'oh' is ‘O’.
· Use the debug facilities, particularly the facility to view the peripheral devices of the microcontroller, to simulate and test your programs.
Q1 Produce a binary count on a parallel port P4. Declare and initialise a variable to zero, initialise the port for output. In an endless loop (i.e. use a while(1) loop) output the variable to the port and increment the variable. Use the debug watch facility to watch the value of the variable and the step over command to step through each 'C' line of the program.

Q2 Use bit masking operations to create a program that will initialise Port 4 to all outputs. Then in an endless while(1) loop perform the following sequence of actions:-

initialise port 4 to all outputs
while(1)
{

P4 = P4 | 0x04;
// set port4 bit 2 on (0x04 = 00000100)
P4 = P4 & 0xfb;
//set port4 bit 2 off (0xfb = 11111011)

set port4 bit 1 on

set port4 bit 1 off

set port4 bit 4 on
set port4 bit 6 and bit 7 on
set port4 bit 4 off
set port4 bit 6 and bit 7 off

}

Notes:

Use the bitwise-OR (|) and bitwise-AND (&) to set and clear the bits.

Remember bits are numbered starting at bit 0 through to bit 7

Use the Debugger/Simulator to display port P4 and single step through the program to verify the output on port P4. (Use the step_over command to step through each line of the 'C' program

Q3 Repeat Q2 but use sbit variables to allow access to the individual bits of the port. The sbit declarations should be used for both the direction register and the port registers. The sbit declarations must be placed near the beginning of your program before the main function. Example
sbit DP4_2 = DP4^2; // Direction for port 4 bit 2
sbit P4_2 = P4^2; // port 4 bit 2

Q4 Copy, rename then modify the C source file for Q1 to include, within the while loop, a call to a delay function. The delay function should use a software loop to generate a short delay of about 0.5 seconds using a software loop. You will need to write the delay function and add it to your program and call it from the main function. You should declare the function near the top of your program as
void delay();

The actual delay function. (Why is the counter variable declared as an unsigned long?)

void delay()

{

unsigned long counter;
for(count = 0; counter < A_BIG_NUMBER; counter++)
{

;

//do nothing

}

}
You should choose a value for A_BIG_NUMBER

(Use the step_over command to step through the main function. Use step_into to step into the delay function and then step through the delay function using step_over. After a few iterations of the loop in the delay function use step_out to return back to the main function.

 Set up a watch on the variables used in your program. Step through the program again noting the changes in the variables in the watch window.

Reset the program and now run the program. Note: Unless the "Periodic Window Update" is selected from the View menu the watched variables do not change. Normally the uVision2 windows are only updated when the program is stopped.
(Note if a running program is interrupted and reset and then a step command is used the program will start stepping into the code of the start167.a66 file. To avoid this, place the cursor on a line in your main function and use the run to cursor command.

Experiment with breakpoints:- Place a breakpoint at a point in your program where you want execution to stop. Reset the program and run it. Note that the program halts when it encounters the breakpoint. Remove the breakpoint.

Q5 Counting logic pulses on a single bit input using Polling.
Write a program that configures port 4 bit 2 as input and port 6 as output.
Sample pseudocode:-
counter = 0
while(1)

{

wait here until port4 bit 2 is logic 1

wait here until port4 bit 2 is logic 0

increment a counter

output counter to port 6

}

Q6 A simple sequencer such as a washing machine programme.
Configure ports :-
Port 4 = Inputs : bit 0 = power switch, bit 1 = water level switch, bit 2 = thermostat

Port 6 = Outputs : bit 0 = valve to allow cold water in., bit 1 = heater to heat up water, bit 2 = motor for agitating washing, bit 3 = pump to empty water.

Write a program that repeatedly performs the following sequence:-

wait for power switch to become logic 1

open valve i.e. set to logic 1

wait for level switch to become 1

close valve i.e set to logic 0

turn on heater i.e set to logic 1

wait for thermostat to become 1

turn off heater

turn on motor1 i.e set to logic 1

delay for about 6 seconds

turn motor1 off i.e. set to logic 0

turn on pump

wait for level switch to become 0

turn off pump

wait for power switch to become 0

Q7 Write a program to continuously output the following pattern on port 4. (Hint; use << shift left operator e.g. x = x << 1;)
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000001 etc.

Q8 Copy the program you wrote for Q4, rename it as Q8 then modify it to produce a printout of the variable in decimal and hexadecimal format to the serial port. You must initialise the UART and baud rate generator before the serial I/O can be used:-

// Code to initialise Serial port

#ifndef MCB167
/* do not initialize if you use Monitor-166 */

 P3 |= 0x0400;
/* SET PORT 3.10 OUTPUT LATCH (TXD) */

 DP3 |= 0x0400;
/* SET PORT 3.10 DIRECTION CONTROL (TXD OUTPUT) */

 DP3 &= 0xF7FF;
/* RESET PORT 3.11 DIRECTION CONTROL (RXD INPUT) */

 S0TIC = 0x80;
/* SET TRANSMIT INTERRUPT FLAG */

 S0RIC = 0x00;
/* DELETE RECEIVE INTERRUPT FLAG */

 S0BG = 0x40;
/* SET BAUDRATE TO 9600 BAUD */

 S0CON = 0x8011;
/* SET SERIAL MODE */

#endif
(Ideally place the code in a function which is called at the beginning of the main function)

The printf function is already configured in the Keil 'C' compiler to send output its output to the serial port. The Serial port output can be viewed whilst debugging by selecting Serial Window 1 from the View menu of u-Vision2.

Note: The formatter for printing an unsigned char as a decimal value is %bu, find out the formatter for printing an unsigned char in hexadecimal using the online C166 user guide.
Investigate the size of the program and its component parts by viewing the .M66 map file produced by the linker stage of the build procedure. Look at the end of the map file for total code used.

Ensure correct operation of your program using the simulator then rebuild, download and test it on the target hardware . See the additional handout on creating programs for the Infineon 167 target board.

Q9 Write a program that repeatedly inputs a value from ADC channel 0 and outputs to the value to the Serial Port.
Modify the program to output the value in degrees centigrade by applying a scaling factor. Assuming that the input to the ADC is from a temperature sensor which generates 0 to 5 volts for temperatures from 0 degrees to 100 degrees centigrade. Note the ADC of the 167 is 12-bit and the ADC reference voltages are 0 and 5volts.
Q10 Replace the software delay function in Q8 with one that uses a hardware timer. You will need choose which timer to use, select a suitable prescaler value and to calculate the value that needs to be loaded into the timer/counter to generate a 1 second delay. Note: some counters can be programmed to count up or down, others are fixed to count up. After the timer has been initialised and started running the timer overflow flag should be poll to detect when it changes from logic 0 to logic 1 indicating the timing period has elapsed.

Q11 Write a program that uses repetitive periodic interrupts from a hardware timer T0 to output the message "Tick" to the serial port every second. We can set a timer to produce the interrupt exactly every second or we could use a smaller time of, say, 5mS and count the number of interrupts in the interrupt service routine. When the count reaches 200, one second of time will have elapsed (200 x 5mS = 1 second).
We also have a choice in where the message gets printed. We could print the message "Tick" from within the interrupt service routine, or simply set a variable (usually called a flag) to 1 when one second of time has elapsed and in the main program poll the flag variable and print the “Tick” message when the the flag has been set to 1. The flag variable should be initialised to 0 and reset to 0 each time the message is printed. There may be potential problems with the first method (can you work out what they are?) and so the second method is often used instead. Implement both solutions.

Q12 Using the LCD routines (files lcd.h and lcd.c from directory f:\public\167\lcd) write a program that continuously reads from the ADC at regular intervals of 0.25 seconds and displays the digital value on the LCD. You will not be able to fully simulate this program so this program should be tested on the target hardware.
See contents of directory f:\public\167\lcd for an example test program.

Q13 Using the keypad routines in directory f:\public\167\keypad modify Q9 to use the keys of the keypad to control the sampling of the ADC. The sampling should initially be disabled. Pressing the ‘1’ key should start sampling and the ‘2’ key should stop sampling.

Q14 Modify the previous program to allow the sampling to also be controlled by the 'S' key on the terminal keyboard (connected to the serial port).
The serial port can be read using the standard 'C' functions getchar(), and scanf(). There is also a modified version of the gets() function available which allows the maximum number of characters to be specified. The Keil C51 compiler also has a non standard function called _getkey() which is the same as getchar() but the character entered is not echoed to the output. However all these routine use buffered I/O which basically means that the program will pause at that stage of the program until the information has been entered and the enter key pressed. In many cases we do not want the program to pause while the keys are entered so we often test the UART receive interrupt bit directly to determine if there is a character waiting. This bit is normally 0 and becomes a 1 when a character has been received. We must clear the bit after we read the character
E.g.
if (S0RIR == 1) // test for a received character into UART
{

x = _getkey(); // read in the byte from the UART

S0RIR = 0;
//reset the receive interrupt bit.

etc.
}

===
Misc. notes

The printf() function - general format:-
printf("format_string", variable_list);

Format string must contain a formatter for each variable in the list.

Commonly used formatters:

%d - print an int in decimal

%u - print an unsigned int in decimal

%x - print an int or unsigned int in hexadecimal

%c - print a char as its ASCII character

%f - print a float in floating point format.

The following are unique to the Keil C51compiler

%bd - print a char as a decimal number(-128 to +127)

%bu - print an unsigned char as a decimal number (0 to 255)

The format string can contain other text which is simple output as it appears in the string

examples:

printf("The result is %d\n", x); /* \n performs a newline

printf("The values are %d %d and %d", a, b, c);

printf("%f %bu \n", temperature, setpoint);

The formatter can also indicate many other features when outputting values such as the total maximum number of character places to print and whether to print leading zeroes. For floating point values the number of digits after the decimal point can also be specified. Look up the printf() function for these extra features in a suitable text.

Serial port configuration

To configure the 167CS microcontroller serial port and baud rate to 9600 use the following code

#ifndef MCB167
/* do not initialize if you use Monitor-166 */

 P3 |= 0x0400;
/* SET PORT 3.10 OUTPUT LATCH (TXD) */

 DP3 |= 0x0400;
/* SET PORT 3.10 DIRECTION CONTROL (TXD OUTPUT) */

 DP3 &= 0xF7FF;
/* RESET PORT 3.11 DIRECTION CONTROL (RXD INPUT) */

 S0TIC = 0x80;
/* SET TRANSMIT INTERRUPT FLAG */

 S0RIC = 0x00;
/* DELETE RECEIVE INTERRUPT FLAG */

 S0BG = 0x40;
/* SET BAUDRATE TO 9600 BAUD */

 S0CON = 0x8011; /* SET SERIAL MODE */

#endif

This should appear near the beginning of your program and BEFORE you send any output to the serial port. Ideally you should provide this as a function that can be called from the beginning of your main function
Data sheets, User Guides & other information

D:\datashts\infineon
Use the on-line help in u-Vision 2
See directory f:\public\167 on the system in Lab. 4215 for example programs
6
1
Alan Goude

School of Engineering, Sheffield Hallam University.

V1.4 October 2004

