Brief C Notes

C - A very brief overview

Program structure - A ‘C’ program is made up of functions and each function is in turn made up of ‘C’ statements. Each ‘C’ statement is terminated with a semicolon ‘;’ , since we normally place each statement on its own line we often find that semicolons appear at the end of each line. However DON’T BLINDLY PLACE SEMICOLONS AT THE END OF EVERY LINE.

 SEMICOLONS ONLY GO AT THE END OF A ‘C’ STATEMENT.

All programs start execution at a special function called main.

'C' Program format

Example

/*

 Filename : template.c

 Author : A N Other

 Date : 12/12/2003

 Program Desription: Blah Blah Blah

 Version History: Foo Bar, Foo Bar.

*/

/*****************************/

/* #includes */

/*****************************/

#include <stdio.h>

/* Embedded C uses non standard, processor specific, header files */

#include <c167cs.h>

/* for user written header files use " " instead of < > */

#include "\myproject\mydefs.h"

/*****************************/

/* #defines,constants etc. */

/*****************************/

#define FALSE 0

#define TRUE !FALSE

/*****************************/

/* Global Declarations */

/*****************************/

int ticks;

/*****************************/

/* Function Declarations */

/*****************************/

void delay_ms(unsigned int delval);

/*****************************/

/* Local File Declarations */

/*****************************/

sbit DP2_15 = DP2^15;
/* Allocate I/O Port pins

sbit P2_15 = P2^15;

/*************************************/

/* Main Function - Start of program */

/*************************************/

void main()

{

 DP2_15 = 1;

 P2_15 = 1;

 delay_ms(20000);

 P2_15 = 0;

 while(1)

{

/* Do something interesting */

/* More program statements */

}

} /* end of program */

/**/

/* Start of other use written functions */

/**/

/**/

/* Function : delay_ms(delay value) */

/* Inputs : unsigned int delay value */

/* Returns : none */

/* Calls : none */

/* Description :- */

/* delay for number of milliseconds. The time is determined by */

/* the passed value. Timing done by a software loop and is */

/* therefore approximate. */

/**/

void delay_ms(unsigned int delval)

{

 unsigned int x = 0;

 while(delval--)

{

 for(x = 0; x < 1430; x++);

 }

}

/*

Other Functions go here and are declared before the main function

*/

‘C’ Data Types
	Integer Types
	Range
	Size(bits)
	Comments

	char
	-128.. +127
	8
	used to hold ASCII character codes

	int ‡
	-32768 .. +32767
	16 or 32
	Range is for a 16-bit compiler & CPU.
The normally used integer data type

	short int
	
	16
	

	long int
	
	32
	for large numbers

	unsigned char
	0 .. + 255
	8
	often used for interfacing with digital I/O ports

	unsigned int
	
	16 or 32
	

	unsigned short int
	
	16
	

	unsigned long int
	0 .. +4294967295
	32
	

	Real Types
	Range
	Comments

	float
	approx. (1x 10(38 with (6 sig. digits
	The normally used real data type

	double
	approx. (1x 10(308 with (15 sig. digits
	For high precision

	long double
	approx. (1x 10(4932 with (19 sig. digits
	For high precision

‡The limits for a particular machine & compiler combination are defined in the header file <limits.h>

Exercise : Complete the table above.

Note: There is no string (i.e. sequence of characters) data type in ‘C’. A string is stored as a group of characters occupying consecutive memory locations.

Variables

Variables are used to hold data. We refer to the data by giving the data a name or identifier. We choose the identifier and the data type for our variables.

We must declare all our variables in a declaration statement.

The simplified general format :- data_type identifier ;

Example:
int age;

We can declare several variables all with the same data type :- data_type identifier1,id2,id3,id4 ;

we can also give the variable an initial value:- data_type identifier = value;

Examples:
int x;

float root1, root2;

int a=4, b=6, c;

Declaring and initialising a character variable

char units = ‘C’; notice single quotes!
To declare a string variable we use a modified char declararion which involves arrays :-

char name[20];

allows 19 characters for the variable name.

char name[6] = “GOUDE”;
 notice double quotes and string length!!

N.B. All strings have a special character called the null (value zero) to mark the end of the string.

Constants
Variables can be made constant (a contradiction in terms) by prefixing the declaration with the keyword const N.B. the constant must be initialised and cannot be subsequently changed in the program. Examples

const float pi = 3.14159;

const char man = ‘M’;
Output Functions

To output information on the standard output device, which is normally a monitor , we use the standard ‘C’ library functions. There are several output functions here a three commonly used functions:

putchar()
print a single character.

puts()
print a string of characters.

printf()
print formatted. This is a powerful and large function with many options.

Examples

putchar('n');

putchar(product_code); where product code is a char type variable.

puts("Options Menu");
General format of printf()

printf("format string", <optional variable list>);
To print out a string of normal characters (a literal string):

printf(“C is great!”);
Escape sequences are used to print special characters, all begin with backslash ‘\’. Examples:

	\b
	backspace
	\t
	horizontal tab

	\n
	newline
	\?
	Question mark

	\’
	single quote
	\”
	double quote

	\\
	backslash
	
	

The most commonly used is \n to make the cursor move to a newline e.g.

printf(“\'C\' is great!\n”);

would produce

'C' is great!
_

note cursor is on a newline.

A major use of the printf function is for printing the value of variables.

To print out the value held in variables we use special format specifiers. All format specifiers begin with the percent symbol and for numbers have the general form :-

 %width[.precision] type

where width is optional and precision is optional for real numbers.

There are many format types here are some of the commonly used ones. (look up and note the others)

	type
	output format
	used for data type

	d
	decimal integer
	int,

	x
	hexadecimal
	int

	u
	unsigned decimal integer
	int

	c
	single character
	char

	s
	string
	a group of chars (i.e. array)

	f
	floating point
	float & double

	e, E
	f.p in exponential format
	float and double

Types d, x, and u may be preceded by the letter l to indicate they are long integers

Types f, e and E may be preceded by the letter L to indicate they are long double

The width indicates the minimum size of the field for displaying the number. If the specified width is too small then it is ignored.

The precision is only for real numbers and is the number of digits to display after the decimal point.

Normally numbers are right justified in the field unless the width is negative when left justification is used. Padding characters are normally spaces but can be set. to zero’s. Mastering prinf’s many features takes time and practice but is worth the effort. Read up on the other format types and printf’s many other features and practice using them.

Examples

A simple text string

printf("No messages today");

With embedded escape characters e.g. \t = tab, \n = newline etc.

printf("1)\tEnter record\n2)\tDelete record\n3)\tExit\n\n");
With % formatters

printf("The answer is %d metres\n",distance);

printf("Voltage = %f and Current = %f\n", volts, amps);

printf("Age = %d, Height = %f m., Sex = %c\n",age,ht,sex);
Typical output :-

The answer is 312 metres

Voltage = 12.12000 and Current = 2.234453

Age = 31, Height = 1.77 m., Sex = M

Input functions

Input in many programming languages is poorly catered for and ‘C’ is no exception. There are several functions that deal with input in the standard ‘C’ library.

getchar()
get a single character (note this is buffered input and can be awkward to use)

gets()
get a string of characters (input is terminated one pressing enter key)

scanf()
scan formatted. The complement to printf, however it uses different formatters and is very difficult for beginners and even fairly competent ‘C’ programmers to use.

There are some input and output(i/o) routines which are specific to the PC and are therefore non standard (i.e. not ANSI ‘C’) they do however make inputting a single character easier.

Use Help in Borland C package to find information on getch() and getche() functions and other i/o functions.

All the functions mentioned above are specifically for screen and keyboard i/o. There are many other i/o functions for file/stream handling which will be covered in later lectures.

The scanf() function.

 The most useful input function is scanf, however it is not an easy function to use or master especially for students learning ‘C’. So beware - you have been warned.

In many respects it is similar but subtly different from printf such that it causes many error in use.

General format

scanf(“format string”, arg1,arg2,….argn);

Where arg1, arg2 etc are the address of the variable!!

The format string defines how the input is to be interpreted by the program. This uses a similar arrangement to printf by using format specifiers.

There are many format types here are some of the commonly used ones. (look up and note the others)

	type
	output format
	used for data type

	d
	signed decimal integer
	int,

	x
	hexadecimal
	int

	u
	unsigned decimal integer
	int

	c
	single character
	char

	s
	string
	a group of chars but not space

	f
	floating point
	float only

	e, E
	f.p in exponential format
	float only

Types d, x, and u may be preceded by the letter l to indicate they are long integers

Types f, e and E may be preceded by the letter l to indicate they are double

Types f, e and E may be preceded by the letter L to indicate they are long double

To obtain the address of a variable we use the address operator ‘&’.

Selection in 'C'

There are three main selection statements :-

1. if (conditional expression) statement;

2. if (conditional expression) statement 1; else statement 2;

3. switch - see later notes

In the first case the statement following the conditional expression is executed if the conditional expression is true,. If the conditional expression is false the program jumps forward and continues execution with the next statement in the program.

The second if statement will execute statement 1 if the conditional expression is true otherwise it will execute statement 2.

The conditional expression is usually an expression involving one or more of the relational operators (>, >=, <, <=, == and !=) take note that equal to is two equals symbols together.

e.g.
if (x > y) printf("x is biggest\n");

if (a == b) printf("a and b are the same\n"); else printf("a and b are different\n");

if ((b * b) >= (4 * a * c)) { x1 = …….; x2 = …..; …..; printf("second root is …); }

Notice the use of the curly braces in the last example to group several statements into one statement block.

This is a compound statement or statement block - a group of statements that are bracketed together using the { and } braces. Syntactically this effectively creates a single statement.

The conditional expression often involves the use of the boolean operators &&(AND), || (OR) and sometimes the ! (NOT). These operators have the same meaning as is digital electronics and have the following truth tables.

	&& (AND)
	|| (OR)
	! (NOT)

	A
	B
	Result
	A
	B
	Result
	A
	Result

	F
	F
	F
	F
	F
	F
	F
	T

	F
	T
	F
	F
	T
	T
	T
	F

	T
	F
	F
	T
	F
	T
	
	

	T
	T
	T
	T
	T
	T
	
	

Examples of conditional expressions using boolean operators

 ((count < 10) && (guess != number))

(((inp < 0) || (inp > 100)) && (status == 1))

Notes:

In 'C' False has the value zero and True is non-zero. It is therefore possible to use numeric values or variables in place of the conditional expression :-

if (a) printf(" a is True i.e non-zero\n");

This leads to a common error in 'C' :-
if (a = 2) printf ("blah blah\n");

Style & layout of if statements.

if (……)

{

statement(s);

}

if (……)

{

statement(s);

}

else

{

statements(s);

}

Notice the indentation.

For students I recommend these styles be adhered to even there is only a single statement and there is no need for the statement block. This is because it easier to visually check your program code.

Nesting if statements - if statements may appear in other if statements, this is called nesting. The number of levels of nesting is virtually unlimited.

Consider the following: if (…) if (…) S1; else S2;

if (…)

{

statement(s);

if (…)

{

statement(s);

}

}

else

{

statement(s);

}

if (…)

{

statement(s);

if (…)

{

statement(s);

}

else

{

statement(s);

}

}

The else is associated with the most recent if unless the statement structure indicates otherwise i.e. the left hand case would be assumed if no curly braces were used.

Note it is the statement structure not the layout that determines the logic of the program.

fflush(stdin);

scanf("%c", &choice);

if (choice == 'A')

{

…

}

if (choice == 'B')

{

…

}

if (…)

{

…

}

etc.

fflush(stdin);

scanf("%c", &choice);

if (choice == 'A')

{

…;

}

else

{

if (choice == 'B')

{

…

}

else

{

etc.

}

}

One common use of if statements is interpreting a user input choice :-

For this type of use the switch statement is more convenient. See next page.

The switch statement

General switch format :

switch (variable)

{

case constant1 :
statement(s);

break;

case constant2 :
statement(s);

break;

case constant3 :
statement(s);

break;

default :

statement(s);

}

The variable is compared in turn with the case constants, if there is a match the corresponding statement(s) are executed. The break statement causes the execution to break out of the switch statement and resume execution with the statement following the closing brace of the switch statement. If the break statement is omitted then matching will continue with the rest of the case constants.

The default case is optional and is used when no match is found.

Example

switch (choice)

{

case 'A' : statement(s);

 break;

case 'B' : statement(s);

 break;

default : statement(s);

}

Another example: A menu driven system

choice = 'X';

while (choice != 'Q')

{

fflush(stdin);

scanf("%c", &choice);

switch (toupper(choice))

/* requires ctype.h header file */

{

case 'A': /* Do processing for choice A */

break;

case 'B': /* Do processing for choice B */

break

etc.

case 'Q' : break;

default: printf("Invalid choice\n");

}

}

 Iteration in 'C'

There are many occasions in programming where a statement or group of statements need to be executed repeatedly using an iteration or looping construct.

There are two types of iteration - definite and indefinite. Definite is where the loop will be executed a known number of times, whereas indefinite is dependent on some condition which is not known in advance.

In 'C' there are three iteration statements :-

1. while (conditional expression) statement;

2. for (expression1; conditional expression; expression2) statement ;

3. do { statement; } while (conditional expression) ;

The while loop

In the while loop the statement(s) following the conditional expression is executed while ever the conditional expression is true. When the conditional expression becomes false the program jumps over the statement(s) and continues execution with the next statement in the program. Note that if the conditional expression is false to begin with then the statement(s) in the loop body are never executed.

Suggested layout for the while statement :

while (conditional expression)

{

statement(s);
/* this is called the loop body */

}

…

Here are some typical uses of loops.

1 Executing statement(s) a specified number of times. Definite iteration.

count = 0
/* initialise the loop counter */

while(count < 10)

{

/* the statements to be executed go here */

count++;

/* increment count by one, same as count = count + 1 */

}

…

2 Looping until a specific value is detected. Indefinite iteration

while (x != value)

{

/* recalculate or input another value for x */

}

…

Example - loop until user inputs 'C' character :-

x = 'A';

/* Make conditional expression true to begin with */

while (x != 'C')

{

fflush(stdin);

scanf("%c",&x);

}

…

3 Getting an input from the user in a particular range. Indefinite iteration.

fflush(stdin);

scanf("%d",&input);

while ((input < 1) || (input > 100))

{

printf("Invalid input. Out of range\n");

fflush(stdin);

scanf("%d",&input);

}

…

4. The scanf function actually returns a status value which is the number of items it successfully scanned from the keyboard.

Consider :- scanf(%d",&x); this will return the status value 1 if the user enters sensible input for this type of variable, an integer in this case, and 0 if the user enters something that scanf cannot interpret as an integer.

We can use this returned status value by rewriting the code :-

stat_val = scanf("%d", &x);

now stat_val is either 0 (no sensible value entered) or 1 (the user entered a valid integer)

We can use this in a while loop to repeatedly get input from the user until they enter a valid input :-

fflush(stdin);

stat_val = scanf("%d",&x);

while (stat_val == 0)

{

printf("Invalid input. Not an integer\n");

fflush(stdin);

stat_val = scanf("%d",&x);

}

…

Advanced 'C' : It is possible to embed a function call within the conditional expression, experienced 'C' programmer often use this technique as it reduces the amount of code that has to be typed in.

fflush(stdin);

while (scanf("%d",&x) == 0)

{

printf("Invalid input. Not an integer\n");

fflush(stdin);

}

…

Common mistakes in using iteration.

Creating infinite loops by putting a semicolon after the conditional expression.

Conditional expression false to start with.

Conditional expression always true.

Forgetting to initialise the loop counter for definite iteration.

Incorrect relational operator in the conditional expression.

Incorrect boolean operator in expressions.

The for loop

The for loop is really the same as the while loop in a more convenient form, which is shorter to type, more readable and is especially convenient for definite iteration.

Suggested layout:

for(expression1, conditional expression, expression2)

{

statement(s);
/* the loop body */

}

…

Expression1 is executed once only at the beginning of the statement.

The conditional expression is then evaluated, if it is true the statements in the loop body are executed and then expression 2 is executed. Execution now continues with the conditional expression and while ever this is true this process continues. When the conditional expression is evaluated to false the loop terminates and execution continues with the statement following the closing brace at the end of the loop body.

Examples

Equivalent WHILE loop
count = 0

while(count < 10)

{

/* the statements to be executed */

count++;

}

…

for (count = 0; count < 10; count++)

{

statement(s);

}

…

/* print out times tables */

for(i = 1; i <= 12; i++)

{

for (j = 1; j <= 12; j++)

{

printf("%2d x %2d = %3d\n", j, i, i * j);

}

}

Output :-

 1 x 1 = 1

 2 x 1 = 2

 ……etc.……

12 x 1 = 12

 1 x 2 = 2

 2 x 2 = 4

 ……etc.……

12 x 2 = 24

 1 x 3 = 3

The do - while loop

This is similar to the while loop except the statements in the loop body will be executed at least once because unlike the while loop the test is at the bottom of the loop instead of the top.

Suggested layout

do

{

statement(s);

} while (conditional expression);

Note that for a do-while loop there is a semicolon after the conditional expression because this is the end of the do-while statement.

A typical usage for a do - while statement : -

do

{

/***********/

/* loop body */

/***********/

do

{

printf("Do you want to play again? Answer Y or N ");

fflush(stdin);

stat = scanf("%c",&response);

} while (stat == 0);

} while ((response == 'Y') || (response == 'y'));

Notice the nesting of one loop inside another.

Another example - Checks for a valid input in the range 1 to 100.

do

{

fflush(stdin);

stat_val = scanf("%d",&input);

if (stat_val == 1)

{

if ((input < 1) || (input > 100))

{

printf("Invalid input. Out of range\n");

}

}

else

{

printf("Invalid Input\n");

}

} while ((stat_val == 0) || (input < 1) || (input > 100));

Functions

Functions are a major feature of ‘C’, in fact a ‘C’ program is a collection of functions. All ANSI ‘C’ compilers come with a standard library of functions which are immediately available to the programmer. . Functions can be called (i.e. the statements that make up the function executed) by simply using the name of the function and providing any data that is required by the function in parentheses after the function name.

In ‘C’ we can identify two types of function; those that return a single value from the function (called functions in PASCAL) and those that do not return a value (called procedures in PASCAL) which are often called void functions.

Examples of function calls:

printf(“The result is %6.3f metres.\n”, length);

myfunc(x, y);

vector = sin(angle);

initialise();

The data in the parentheses that is passed to the function are called the actual arguments. The actual arguments passed to a function can be either variables or literal values.(See notes on literal data)

A function can be viewed from a design perspective as a block box which may take in inputs, perform a certain task and may produce output.

Functions provide a way of grouping together ‘C’ statements that perform some specific task.

Functions allow the programmer to produce top down modular designs.

In addition to the standard library of functions ‘C’ provides the facility to generate user written functions.

There is one special user written function which is called main which is the starting point for the execution of a ‘C’ program.

A ‘C’ program will consist of the main function and other user written functions which can be included in the same source file as the main function or may be contained in several source files. This allows programmers to work in teams where the programmers write their functions in separate ‘C’ source files which can be compiled separately to produce object files and then the object files linked together along with any standard library functions to produce the final executable program.

Declaring and Defining Functions

· Before a function can be called it must be declared. A function declaration provide the compiler the name of the function, the number and types of arguments. If the declaration is omitted certain assumption are made by the compiler, these are often inappropriate or just plain wrong and usually lead to errors at run-time. Therefore it is essential that all functions be declared before they are called.

· A function definition is the actual ‘C’ source code statements that make up the function.

When a ‘C’ compiler compiles a ‘C’ source file it must be informed through declaration statements of the names(more formally; identifiers) of variables and functions before they are encountered in any ‘C’ statement. For variables this is done using variable declaration/definition statements such as:-

{

float pressure;

/* water pressure in cylinder */

const float offset_pressure = 3.42;
/* mains water pressure in bar */

float pressure_history[10];
/* last 10 pressure readings */

int i, j;

/* loop counters */

int count = 0;

/* number of cylinders tested */

--- etc. ---

Notes/reminders:

The examples above are both declarations and definitions because they declare the name and type of the variable and they define storage(memory) space for the variable.

Local variables must be declared after an opening brace ‘{‘ and before any executable statements. They remain in scope until the matching closing brace ‘}’.

Several variables of the same type can be declared in a single declaration.

Local variables can be initialised otherwise they have a random value.

Variables can be made constant by use of the const keyword (what a contradiction of terms!).

Similarly for functions before a function may be called the function must be known to the compiler, this is again done through a declaration statement. (The alternative is to place the function definition before the call to the function - This is poor programming practice and not recommended!) For the standard library functions this is achieved by including the appropriate header file which basically consists of function declarations.

The general form of a function definition in ‘C’ is :-

return_type function_name (formal argument list)

{

Function body

return var;

}

The function declaration statement for the above would be the single statement:

return_type function_name (formal argument list) ;
A complete program example. Notice program documentation provided in the comments

#include <stdio.h>
/* include standard i/o function declarations */

#include <math.h>
/* math.h has function declaration for square root */

/*

Filename
: hyp.c

Author

: A Goude

Date

: 12/12/97

Version History :

 V1.0
 original program

*/

/* function declaration or prototype for hypotenuse */

float hypotenuse (float opposite, float adjacent);
 /* the input argument names are optional */

void main()

{

float side1, side2, hyp;

printf("Enter value for side1 :> ");

scanf("%f", &side1);

printf("Enter value for side2 :> ");

scanf("%f", &side2);

hyp = hypotenuse(side1, side2);

printf("The hypotenuse of a triangle with ");

printf("sides %6.2f and %6.2f is %7.3f\n",side1, side2, hyp);

} /* end of main */

/***/

/*

hypotenuse : Calculates hypotenuse of a right angled triangle

input : opposite and adjacent lengths

output : the length of the hypotenuse

function calls : sqrt

*/

float hypotenuse (float opposite, float adjacent)

{

float temp;

temp = (opposite * opposite) + (adjacent * adjacent);

/* sqrt returns a double so cast(convert) to float before assignment to temp*/

temp = (float) sqrt(temp);

return temp;

}

Here’s a blow by blow account of what happens as the program is executed :

· The program starts at function main.

· The three floats side1, side2 and hyp are created.

· The first printf function call is made.

· The scanf function call allows the user to type in a value which is stored in the variable side1
· The second printf function call is made.

· The scanf function call allows the user to type in a value which is stored in the variable side2.

· The next statement calls the hypotenuse function, the formal arguments are created and initialised with the values from the actual arguments. In other words opposite and adjacent become local variables in the hypotenuse function and are copies of side1 and side2 respectively.

· The execution now continues within the hypotenuse function and so the local float temp is created. The variables defined in the main function now go out of scope. (See notes on the scope of variables).

· temp is assigned the value of the expression on the right hand side of the assignment operator ‘=’.

· The square root of temp is calculated and assigned back to temp. Notice that the value returned by the sqrt function is a double and so we convert it to a float using a cast operation before we assign it to temp which is a float type variable. (Look up casting)

· The return temp statement now copies back the value in temp and assigns it to hyp back in the main function. The variables opposite, adjacent and temp now go out of scope; effectively they disappear and the memory they once occupied is free to be used again.

· On returning to the function main execution now continues with the call to printf followed by another call to printf. Notice the % formatters and the escape sequence \n.

· On encountering the closing brace of the main function the memory used by the variables created in main is released and the program terminates.

The display from a typical run might be :-

Enter value for side1 :> 12

Enter value for side2 :> 5

The hypotenuse of a triangle with sides 12.00 and 5.00 is 13.000

Some questions to consider.

What if the function call had the wrong number of actual arguments?

E.g.
hypotenuse(1.2);
or hypotenuse(x, y, z);
What if the number of actual arguments is correct but the types of the actual arguments was different to the formal arguments?

E.g.
hypotenuse (‘A’, 1) or hypotenuse(num1, num2); where num1 and num2 are not float types

If a function returns a value what is the effect of assigning the returned value to a type that is different to the type returned?

E.g.
int x;

x = hypotenuse(12.0, 5.0);
/* x is an integer but the function returns a float */
Exercise :

Type in the hyp.c source code and try the modifications mentioned above. Note whether the program compiles successfully or not (note any warning or error messages). If the program compiles & links successfully execute the program by stepping/tracing through the program and set up a “watch” on all relevant variables using the debugging tools in the ‘C’ Integrated Development Environment (IDE). Make notes on your findings.

Rewrite the program to use integers instead of floats and repeat the exercise.

The Terms Declaration and Definition

A declaration introduces an identifier or name to the compiler.

A definition defines an object which occupies a certain amount of storage. There must only be one definition of an object.

There may be many declarations of a variable or function but there can only be one definition .

For many variables the declaration and definition occur simultaneously.

E.g.
int x;

This declares the identifier x and defines a given amount of storage to hold the integer.

It is possible to simply declare a variable by using the extern keyword :-

extern int y;

This only declares the identifier y. The definition of y and the allocation of storage for the int occur elsewhere, usually in another source file. This facility is used in program which is made up of several source files where only one source file defines the variable but several source files may declare it and subsequently reference the variable. A declaration allows reference to be made to an identifier which would otherwise cause the compiler to issue a compilation error such as " undeclared identifier".

Literal data

Literal data is a data that is expressed explicitly in a statement as a constant piece of data.

E.g.
circumference = 2 * 3.141596 * radius;

putchar('A');

puts("I was here");

In the first example 2 and 3.141596 are literals and would be given types of int and float

In the second 'A' is a literal char and in the last "I was here" is a literal string.

Literal example

type

123

integer

123L

long

45.678

float

45.678

double

Promotion and Casting

Type promotion in expressions involving binary operators such as x * y

· If the types are integral of size int or smaller then non int types are promoted to int.

· If the types are integral and one of the types is a long then non long types are promoted to long.

· If one of the types is a floating point type then non double types are promoted to double.

Promotion does not affect the original variable's type or value. The promoted value is an internal version of the variable which is generated for the duration of the calculation only.

Promotion occurs automatically and takes a type to another type that can represent the value more accurately. The order of promotions is :-
char => short => int => long => float => double

Consider the following program fragment.

int x = 12;

char c = 'A';
/* ASCII code 65 */

float r = 23.45;

double s = 987.123;

double val;

/* not a sensible expression to be calculated but it demonstrates a point. */

val = ((c + x) * (s - r));

First to be calculated is the addition of c and x. When both types are integral (whole number) types they are converted to int type if necessary before any operation, so the value of the char c would be promoted to an integer just for this calculation yielding a int partial result. Next would be the subtraction which since it involves a double and float would require that r be promoted to double before the subtraction this would yield a double partial result. Next would be the multiplication of the two partial results since one of these is a double type the other would be promoted to a double and the multiplication performed yielding a final answer with type double. Finally would come the assignment to val which would be perfectly okay because the expression yielded a double type result which matches the type of val.

If val had been any other type then a good compiler would have flagged this with a warning because there would have been a potential for loss of accuracy. I.E. if a demotion of a type is ever required, as in this assignment, then this should be flagged as a warning.

N.B. Some older compilers do not give warnings and even on new compilers the warning can be "turned off".

Casting is an explicit user invoked conversion from one type to another. To cast to another type the value to be converted is preceded by the new type enclosed in parentheses :-

if x is an integer and y is a float then

x = y;

should give a warning.

To tell the compiler you know what you are doing (or think you do!) then you can explicitly cast y prior to the assignment :-

x = (int) y;

one common use of casting is shown below:

a = b / c;

printf(" a is %f\n", a);

if a is a float and b and c are integers with values of 1 and 3 respectively then the value printed for a is 0.000000 because since b and c are integers the division yields an integer result i.e. one div1ded by three is integer 0 which is promoted to the double equivalent 0.00000 .

To correct at least one of the variables in the division must be cast to a float or double to force the calculation to be done in floating point instead of integer. The modified version is shown below.

a = (float)b / c;

printf(" a is %f\n", a);

Variable Scope and Storage Class

Scope

The scope of a identifier is defined as the section of the program where the use of the identifier is valid. The scope determines the "visibility" of the identifier. The scope can be limited to a single block, a single function or the functions in a given file. We are most often concerned with the scope of variables but the issue scope also applies to functions particularly when we have a program made up of several source files.

Those variables defined within a function are said to have local scope and are often called local variables. Local scope variables must be defined within a statement block immediately after the opening brace of the statement block. Their scope extends from the point of definition to the corresponding closing brace of the statement block. Normally local variables are defined immediately after the opening brace after the function header. Unless local variables are initialised at the point of definition their value is undefined.

Variables defined or declared outside of any function have global scope i.e. the variables name is "visible" from the point in the source file where the global variable is declared. It is therefore most common to place all global variables near the top of the source file before any function definitions so that they are in scope (accessible) in all the functions. Global variables can be initialised in the same way as local variables but are initialised to zero by default.

For a program contained within a single source file. (Scope within a file)

Notes relating to the previous diagram.

The arguments of a function header have the scope of the function in which they are used.

ga and gc are initialised to zero because they are global variables.

Functions also have a scope which is global within the file.

Points to remember

· It is good programming practice to make identifiers local.

· A variable that is needed in just one block should be defined at the beginning of that block.

· If a variable is required to be shared by several functions it can either be passed an argument to those functions or can be made global to those functions that need to use it. (We will return to look at this later)
/* Include library header files */

#include <stdio.h>

#include <otherheaders.h>

/* This is a comment */

/* global declarations go here */

/* main function is where the program starts */

void main()

{

	local variables here

	main program goes here

}

/*Other functions go here each may have their own local variables */

Output

Function

Input

A user chosen name for the function. Must be unique and not a ‘C’ keyword.

One of the standard types or void if there is no returned value

This line is called the function header. Notice there is no semi-colon at the end of the line.

The formal argument list may be empty

The ‘C’ statements that make up the function, including variable declarations.

The return statement is not required if this is a void function

				SCOPE of identifiers for

					 VARIABLES		FUNCTIONS

int ga, gb = 42;

int gc;

	

	

void main()

{

	int x;

	float y;

	--- rest of main function ---

}

int f1(float a1, int a2)

{

	int la, lb;

	while (arg2 > 0)

	{

		int in,la;

		--- etc –

	}

/* rest of func1 */

}

int f2 ()

{

	int x, la,ga;

	/* etc */

}

ga,gb

x,y

a1,a2,la,lb

x,la,ga

gc

 in,la

main,f1,f2

FILE A

1

